Rút gọn :
A = \(\dfrac{6^{12}.3^3.5-7.9^7.2^{13}}{2.4^7.5-2^{14}.3^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{6^{12}.3^3.5-7.9^7.2^{13}}{2.4^7.5-2^{14}.3^2}\)
\(=\dfrac{2^{12}.3^{12}.3^3.5-7.3^{14}.2^{12}}{2.2^{14}.5-2^{14}.3^2}\)
\(=\dfrac{2^{12}.3^{15}.5-7.3^{14}.2^{13}}{2.3^{14}.5-2^{14}.3^2}\)
\(=\dfrac{2^{12}.3^{14}.\left(15-14\right)}{2^{14}.\left(2.5-3\right)}\)
\(=\dfrac{3^{14}.1}{2^2}\)
\(=\dfrac{314}{4}\)
d)
\(\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}\\ =\dfrac{3^{29}.2^6.2^2}{3^{24}.3^5.2^6}\\ =\dfrac{3^{29}.2^6.4}{3^{29}.2^6}\\ =4\)
e)
\(\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}\\ =\dfrac{2^{21}.5^3.3^4}{2^3.2^{18}3^4.5}\\ =\dfrac{2^{21}.5.5^2.3^4}{2^{21}.3^4.5}\\ =5^2\\ =25\)
f)
\(=\dfrac{24\left(315+561+124\right)}{\dfrac{\left(1+99\right).50}{2}-500}\\ =\dfrac{24.1000}{2500-500}\\ =12\)
\(a,\dfrac{-14.15}{21.\left(-10\right)}=\dfrac{-7.2.3.5}{7.3.\left(-2\right).5}=1\)
\(b,\dfrac{5.7-7.9}{7.2+6.7}=\dfrac{7\left(5-9\right)}{7\left(2+6\right)}=\dfrac{-4}{8}=-\dfrac{1}{2}\)
\(c,\dfrac{\left(-7\right).3+2.\left(-14\right)}{\left(-5\right).7-2.7}=\dfrac{-7.\left(3+4\right)}{7\left(-5-2\right)}\)
\(=\dfrac{\left(-7\right).7}{7.\left(-7\right)}=1\)
\(d,\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}=\dfrac{3^{29}.2^8}{3^{24}.3^5.2^6}=\dfrac{3^{29}.2^8}{3^{29}.2^6}=2^2=4\)
\(e,\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}=\dfrac{2^{21}.3^4.5^3}{2^{18}.2^3.3^4.5}=\dfrac{2^{21}.3^4.5^3}{2^{21}.3^4.5}=5^2=25\)
\(f,\dfrac{24.315+3.561.8+4.124.6}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.315+24.561+24.124}{1+3+5+...+97+99-500}\)
\(=\dfrac{24\left(315+561+124\right)}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.1000}{1+3+5+...+97+99-500}\) (1)
Đặt A = 1 + 3 + 5 + ... + 97 + 99
Số số hạng trong A là: (99 - 1) : 2 + 1 = 50 (số)
Tổng A bằng: (99 + 1) . 50 : 2 = 2500
Thay A = 2500 vào biểu thức (1), ta được:
\(\dfrac{24.1000}{2500-500}=\dfrac{24.1000}{2.1000}=12\)
`a) ((-14).15)/(21.(-10))`
`=(-7.3.5.3)/(7.3.(-2).5)`
`=3/2`
`b) ((-7).12)/((-16).(-14))`
`=(-7.3.2.2)/(-2.2.2.(-7).2)`
`=(-3)/4`
`c) ((-11).(-5))/(15.22) `
`=(-11.(-5))/(3.5.11.2)`
`=1/6`
`d) ((-10).(-18))/((-6).25.7)`
`=(-5.2.-2.3.3)/(-2.3.5.5.7)`
`=6/35`
`e) (5.7-7.9)/(7.2+6.7)`
`=(7.(5-9))/(7.(2+6))`
`=-4/8`
`=-1/2`
`f) (11.9-22.3)/(33.2)`
`=(33.(3-2))/(33.2)`
`=1/2`
\(\left(-\dfrac{1}{2}\right)^2\div\dfrac{1}{4}-2\times\left(-\dfrac{1}{2}\right)^2\\= \dfrac{1}{4}\div\dfrac{1}{4}-2\times\dfrac{1}{4}\\ =1-\dfrac{1}{2}\\ =\dfrac{1}{2}\)
\(\left(-2\right)^3\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right)\div\dfrac{5}{12}\)
= \(-6\times-\dfrac{1}{24}+\left(\dfrac{4}{3}-\dfrac{11}{6}\right)\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{1}{2}\div\dfrac{5}{12}\)
= \(\dfrac{1}{4}+-\dfrac{6}{5}\)
= \(\dfrac{1}{4}-\dfrac{6}{5}\)
= \(-\dfrac{19}{20}\)
\(\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\\ =\dfrac{58}{9}+\dfrac{7}{11}-\dfrac{40}{9}+\dfrac{26}{11}\\ =\dfrac{58}{9}-\dfrac{40}{9}+\dfrac{7}{11}+\dfrac{26}{11}\\ =12+3\\ =15\)
\(a,\left(\dfrac{-1}{2}\right)^2:\dfrac{1}{4}-2\left(-\dfrac{1}{2}\right)^2\)
\(=\left(-\dfrac{1}{2}\right)^2\left(4-2\right)\)
\(=\dfrac{1}{4}.2=\dfrac{1}{2}\)
\(b,\left(-2\right)^3.\dfrac{-1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right):\dfrac{5}{12}\)
\(=\left(-8\right).\dfrac{-1}{24}+\left(-\dfrac{1}{2}\right).\dfrac{12}{5}\)
\(=\dfrac{1}{3}+\left(-\dfrac{1}{5}\right)=\dfrac{2}{15}\)
\(c,\left(6\dfrac{4}{9}+\dfrac{7}{11}\right)-\left(4\dfrac{4}{9}-2\dfrac{4}{11}\right)\)
\(=\dfrac{701}{99}-\dfrac{206}{99}=\dfrac{495}{99}=5\)
\(d,10\dfrac{1}{5}-5\dfrac{1}{2}.\dfrac{60}{11}+\dfrac{3}{15\%}\)
\(=\dfrac{51}{5}-30+20=\dfrac{1}{5}\)
\(e,\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)=\dfrac{5}{7}.\left(-\dfrac{7}{11}\right)\)
\(=-\dfrac{5}{11}\)
\(f,\dfrac{-5}{7}.\dfrac{2}{11}+\left(-\dfrac{5}{7}\right).\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\left(-\dfrac{5}{7}\right)\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\left(-\dfrac{5}{7}\right)+\dfrac{12}{7}=1\)
a: \(=\dfrac{-4\cdot13\cdot9\cdot5}{3\cdot4\cdot5\cdot2\cdot13}=\dfrac{3}{2}\)
b: \(=\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot5=\dfrac{5}{6}\)
a,
\(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=\dfrac{\left(2^2\right)^5}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)
b,
\(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{243}{0,2}=\dfrac{243}{\dfrac{1}{5}}=243\cdot5=1215\)
c,
\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^6\cdot2\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
d,
\(\dfrac{6^3+3\cdot6^2+3^3}{-13}=\dfrac{\left(2\cdot3\right)^3+3\cdot\left(2\cdot3\right)^2+3^3}{-13}=\dfrac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\dfrac{2^3\cdot3^3+2^2\cdot3^3+3^3}{-13}\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3\cdot13}{-13}=-3^3=-27\)
\(a,\dfrac{121.75.130.169}{39.60.11.198}=\dfrac{11.11.25.3.13.10.169}{13.3.6.10.11.11.18}=\dfrac{25.169}{6.18}\)
a) \(\dfrac{2}{3}-\dfrac{2}{6}=\dfrac{4}{6}-\dfrac{2}{6}=\dfrac{4-2}{6}=\dfrac{2}{6}=\dfrac{1}{3}\)
b) \(\dfrac{5}{6}-\dfrac{3}{18}=\dfrac{10}{18}-\dfrac{3}{18}=\dfrac{10-3}{18}=\dfrac{7}{18}\)
c) \(\dfrac{8}{14}-\dfrac{2}{7}=\dfrac{8}{14}-\dfrac{4}{14}=\dfrac{8-4}{14}=\dfrac{4}{14}=\dfrac{2}{7}\)
d) \(\dfrac{12}{20}-\dfrac{2}{5}=\dfrac{12}{20}-\dfrac{8}{20}=\dfrac{12-8}{20}=\dfrac{4}{20}=\dfrac{1}{5}\)
\(A=\dfrac{6^{12}\cdot3^3\cdot5-7\cdot9^7\cdot2^{13}}{2\cdot4^7\cdot5-2^{14}\cdot3^2}\)
\(=\dfrac{2^{12}\cdot3^{12}\cdot3^3\cdot5-7\cdot3^{14}\cdot2^{13}}{2\cdot2^{14}\cdot5-2^{14}\cdot3^2}\\ =\dfrac{2^{12}\cdot3^{15}\cdot5-7\cdot2^{13}\cdot3^{14}}{2^{15}\cdot5-2^{14}\cdot3^2}\)
\(=\dfrac{2^{12}\cdot3^{14}\left(3\cdot5-7\cdot2\right)}{2^{14}\left(5-3^2\right)}\)
\(=\dfrac{3^{14}\cdot1}{-4}=\dfrac{-3^{14}}{4}=\dfrac{-4782969}{4}=-1195742,25\)