Tìm các số nguyên x,y biết \(x^2+2x-8y^2=41\) .Mong các bạn giúp mình!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x-8y^2=41\)
\(\Leftrightarrow x^2+2x+1-8y^2=41+1\)
\(\Leftrightarrow\left(x+1\right)^2-8y^2=42\)
\(\Leftrightarrow\left(x+1\right)^2=42+8y^2\)
\(\Leftrightarrow\left(x+1\right)^2=2\left(21+2y^2\right)\)
- \(21+2y^2\) là số lẻ, 2 là số chẵn.
- Do đó không có \(\left(x+1\right)^2\) để thỏa mãn yêu cầu bài toán.
mk nhớ là làm bài này rồi mà nhỉ, bạn kéo thanh cuốn xuống xíu là thấy bài của mk
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
2x=-8y<=>x/y=-8/2<=>x/-8=y/2
áp dụng t/c dãy t/s=nhau:
\(\frac{x}{-8}=\frac{y}{2}=\frac{x+y}{\left(-8\right)+2}=\frac{-54}{-6}=9\)
=>x/-8=9=>x=-72
y/2=9=>y=18
vậy...
Theo đề: \(2x+y=0\Leftrightarrow y=-2x\) \(\left(1\right)\)
Ta có:
\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)
\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)
\(\Leftrightarrow15-5x=2y-8\)
\(\Leftrightarrow15+8=2y+5x\)
\(\Leftrightarrow5x+2y=23\) \(\left(2\right)\)
Thế (1) vào (2), suy ra:
\(5x+2.\left(-2x\right)=23\)
\(\Leftrightarrow5x-4x=23\)
\(\Leftrightarrow x=23\)
\(\Rightarrow y=-2.23=-46\)
a)x=+-4,+-7;+-2,+-14
b)(2x)^2-1=-21=>(2x)^2=-20=>2x=\(\sqrt{-20}\)=>x sẽ ko có giá trị vì ko có căn âm
c)2xy+x-6y-3-7=0
=2xy+x-6y-10=x+2(xy-3y-5)=0=>xy-3y-5=0
Ta có:
\(x^2+2x-8y^2=41\)
\(\Leftrightarrow x^2+2x+1=42+8y^2\)
\(\Leftrightarrow\left(x+1\right)^2=42+8y^2\)
Ta thấy:
\(\left(x+1\right)^2\) là số chẵn nên chia hết cho \(4\)
\(42+8y^2\) không chia hết cho \(4\)
Vậy không có số nguyên \(x,y\) nào thỏa mãn đề bài
thanks