cho tam giác ABC vuông tại B. đg cao BH. AH=9, CH= 16cm
a, từ h kẻ . HE vuông góc với BC
cm: BE.BC=AH.HC
b, vẽ p/g góc ABC cát AC tại D.CN:
1/BA + 1/BC = căn 2/BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
Bạn nào trả lời được thì xin hãy giúp tớ luôn mai tớ phài nộp rồi nhưng tuần này nghỉ tết sức khỏe ko tốt ko đc đi đâu chơi chỉ ở nhà nằm nghỉ đc thôi. Bạn nào trả lời nhanh nhất tớ tích cho
2/
Ta có (x2 + 4) (x - 1) = 0
=> \(\orbr{\begin{cases}x^2+4=0\\x-1=0\end{cases}}\)=> \(\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Thay x = 2 vào biểu thức B, ta có:
B = 3x2 + 8x - 1 = 3. 22 + 8.2 - 1 = 3.4 + 8.2 - 1 = 12 + 16 - 1 = 27
Thay x = 1 vào biểu thức B, ta có:
B = 3x2 + 8x - 1 = 3.12 + 8.1 - 1 = 3 + 8 - 1 = 11
Vậy khi (x2 + 4) (x - 1) = 0 thì giá trị của biểu thức B là 27 hoặc 11.
Số tự thêm ha
a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:
\(AB^2+AC^2\)
\(=9^2+12^2=225=15^2=BC^2\)
=> Tam giác ABC vuông
b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)
\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)
\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AB^2=BH\cdot BC\)(đinh lí 1)
\(9^2=BH\cdot15\)
\(\Rightarrow BH=5,4\)(cm)
c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AE\cdot AB\)(định lí 1) [1]
Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AI\cdot IC\)(đinh lí 1) [2]
Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)
d/ Gọi M là đường trung tuyến tam giác ABC
\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
: \(AH^2=BH\cdot HC\)(định lí 2)
\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)
Mà \(AH\le AM\)( AH = AM với trường hợp AH trùng AM )
\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)
p/s Hình hơi xấu nhé, thông cảm >:
Ahwi:
Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??
a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12cm
BH=15^2/25=9cm
CH=25-9=16cm
b: Xet ΔABC vuông tại A và ΔDHC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDHC
c: \(\dfrac{S_{ABC}}{S_{DHC}}=\left(\dfrac{BC}{HC}\right)^2=\left(\dfrac{25}{16}\right)^2\)
=>\(S_{DHC}=150:\dfrac{625}{256}=61.44\left(cm^2\right)\)
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB