Cho a,b,c,d là các số dương.Chứng tỏ rằng:
2013<\(\dfrac{2013a}{a+b+c}\)+\(\dfrac{2013b}{b+c+d}\)+\(\dfrac{2013c}{c+d+a}\)+\(\dfrac{2013d}{d+a+b}\)<4026
Giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM - GM cho a,b,c thực dương :
\(\left\{{}\begin{matrix}\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{b^2}=2b\\\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\\\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\end{matrix}\right.\)
\(\Leftrightarrow2.\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge\left(a+b+c\right)\)
Dấu "=" ⇔ a = b =c
Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học toán với OnlineMath
vu thanh tung
Tham khảo nhé
Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học toán với OnlineMath
ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}< =>\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(a+b\right)\ge4\)
<=>\(1+\dfrac{a}{b}+\dfrac{b}{a}+1\ge4\)
Thật vậy:
áp dụng bdt Cô si
=>\(1+\dfrac{a}{b}+\dfrac{b}{a}+1=2+\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2=4\)
vậy bất đăng thức xảy ra
dấu "=" xảy ra \(\Leftrightarrow\)a=b