K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\frac{a+b}{b^2}\cdot\frac{\sqrt{a^2b^4}}{\sqrt{\left(a+b\right)^2}}=\frac{a+b}{b^2}\cdot\frac{ab^2}{a+b}=a\)

15 tháng 8 2021

à quên sửa chỗ này:)

\(=\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{a+b}=\left|a\right|\)xin lỗi nhé :v

16 tháng 1 2022

PTHH : 2Al     +     6HCl  --> 2AlCl3   +    3H2 ↑   (1)

nAlCl3 = \(\dfrac{m}{M}=\dfrac{13,35}{27+35,5.3}=0.1\left(mol\right)\) 

Từ (1) => nHCl   =   2nH2  = 0.2 (mol)

=> mHCl = n.M  =  0.2 x  36.5 = 7.3 (g)

16 tháng 1 2022

\(PTHH:2Al+6HCl\rightarrow2AlCl_3+3H_2\\ n_{AlCl_3}=\dfrac{m}{M}=\dfrac{13,35}{133,5}=0,1\left(mol\right)\\ Theo.PTHH:n_{HCl}=3.n_{AlCl_3}=3.0,1=0,3\left(mol\right)\\ m_{HCl}=n.M=0,3.36,5=10,95\left(g\right)\)

13 tháng 4 2021

Hmm, nói đến cờ chắc là dấu hiệu của semaphore, thử mò xem :v

25 tháng 10 2023

10: Chọn B

Ot là phân giác của \(\widehat{MOP}\)

=>\(\widehat{MOP}=2\cdot\widehat{tOP}\)

\(\widehat{MOP}=\widehat{NOQ}\)

=>\(\widehat{NOQ}=2\cdot\widehat{tOP}\)

mà \(\widehat{tOP}=\widehat{t'OQ}\)(hai góc đối đỉnh)

nên \(\widehat{NOQ}=2\cdot\widehat{t'OQ}\)

=>Ot' là phân giác của góc NOQ

loading...

11:

OC là phân giác của góc AOB

=>\(\widehat{AOC}=\widehat{BOC}=\dfrac{50^0}{2}=25^0\)

\(\widehat{DOE}=\widehat{BOC}\left(=25^0\right)\)

=>\(\widehat{DOE}+\widehat{DOB}=180^0\)

=>OB và OE là hai tia đối nhau

=>Hai góc đối đỉnh là \(\widehat{BOC};\widehat{DOE}\)

=>Chọn D

loading...

12:

\(\widehat{AOC}+\widehat{AOD}=180^0\)

\(\widehat{AOC}-\widehat{AOD}=50^0\)

Do đó: \(\widehat{AOC}=\dfrac{180^0+50^0}{2}=115^0;\widehat{AOD}=115^0-50^0=65^0\)

=>\(\widehat{BOC}=\widehat{AOD}=65^0\)

=>Chọn B

loading...

18 tháng 10 2023

Xét tứ giác ABCD có:

A + B + C + D = 360 độ(theo định lý)

Suy ra C = 360 độ - ( A + B + D)

                360 độ - 240 độ

                 120 độ

Vậy...

18 tháng 10 2023

Bạn thêm ký hiệu góc vào giúp mình.

a: Xét ΔADH vuông tại H và ΔADK vuông tại K có 

AD chung

\(\widehat{HAD}=\widehat{KAD}\)

Do đó: ΔADH=ΔADK

 

26 tháng 9 2021

Bạn ghi đề thiếu mạch có dạng j nha

MCD :R1nt R2

\(U_2=U-U_1=6-2=4\left(V\right)\)

\(I=I_2=I_1=0,1\left(A\right)\)

\(R_1=\dfrac{U_1}{I_1}=\dfrac{2}{0,1}=20\left(\Omega\right)\)

\(R_2=\dfrac{U_2}{I_2}=\dfrac{4}{0,1}=40\left(\Omega\right)\)

NV
17 tháng 9 2021

23.

Ta sẽ tìm điểm \(I\left(a;b;c\right)\) sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\) (1)

\(\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-2-a;2-b;6-c\right)\\\overrightarrow{IB}=\left(-3-a;1-b;8-c\right)\\\overrightarrow{IC}=\left(-1-a;-b;7-c\right)\\\overrightarrow{ID}=\left(1-a;2-b;3-c\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\left(-5-4a;5-4b;24-4c\right)\)

(1) thỏa mãn khi: \(\left\{{}\begin{matrix}-5-4a=0\\5-4b=0\\24-4c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{4}\\b=\dfrac{5}{4}\\c=6\end{matrix}\right.\)

\(\Rightarrow I\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\)

Khi đó:

\(T=MA^2+MB^2+MC^2+MD^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{ID}\right)^2\)

\(=4MI^2+IA^2+IB^2+IC^2+ID^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}\right)\)

\(=4MI^2+IA^2+IB^2+IC^2+ID^2\) (do \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\))

\(IA^2+IB^2+IC^2+ID^2\) cố định nên \(T_{min}\) khi \(MI_{min}\)

\(\Leftrightarrow M\) trùng I

\(\Rightarrow M\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\Rightarrow x+y+z=-\dfrac{5}{4}+\dfrac{5}{4}+6=6\)

NV
17 tháng 9 2021

24.

\(a+b=4\Rightarrow b=4-a\)

ABCD là hình chữ nhật \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow C\left(a;a;0\right)\)

Tương tự ta có: \(C'\left(a;a;b\right)\)

M là trung điểm CC' \(\Rightarrow M\left(a;a;\dfrac{b}{2}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{A'B}=\left(a;0;-b\right)=\left(a;0;a-4\right)\\\overrightarrow{A'D}=\left(0;a;-b\right)=\left(0;a;a-4\right)\\\overrightarrow{A'M}=\left(a;a;-\dfrac{b}{2}\right)=\left(a;a;\dfrac{a-4}{2}\right)\end{matrix}\right.\)

Theo công thức tích có hướng:

\(\left[\overrightarrow{A'B};\overrightarrow{A'D}\right]=\left(-a^2+4a;-a^2+4a;a^2\right)\)

\(\Rightarrow V=\dfrac{1}{6}\left|\left[\overrightarrow{A'B};\overrightarrow{A'D}\right].\overrightarrow{A'M}\right|=\dfrac{1}{6}\left|a\left(-a^2+4a\right)+a\left(-a^2+4a\right)+\dfrac{a^2\left(a-4\right)}{2}\right|\)

\(=\dfrac{1}{4}\left|a^3-4a^2\right|=\dfrac{1}{4}\left(4a^2-a^3\right)\)

Xét hàm \(f\left(a\right)=\dfrac{1}{4}\left(4a^2-a^3\right)\) trên \(\left(0;4\right)\)

\(f'\left(a\right)=\dfrac{1}{4}\left(8a-3a^2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=\dfrac{8}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(a\right)_{max}=f\left(\dfrac{8}{3}\right)=\dfrac{64}{27}\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} xy+4x-5y-20=xy+x-4y-4\\ xy-3x+y-3=xy-2x-y+2\end{matrix}\right.\)

\( \Leftrightarrow \left\{\begin{matrix} 3x-y=16\\ -x+2y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{37}{5}\\ y=\frac{31}{5}\end{matrix}\right.\)

Khi đó: \(m+2n=\frac{37}{5}+2.\frac{31}{5}=\frac{99}{5}\)

Chọn D

\(AH=16\cdot2:8=4\left(cm\right)\)

NV
2 tháng 6 2021

Do AB bằng cạnh lục giác đều nội tiếp \(\Rightarrow\widehat{AOB}=\dfrac{1}{6}.360^0=60^0\)

\(\Rightarrow\Delta ABC\) đều \(\Rightarrow\left\{{}\begin{matrix}AB=OA=R\\OH=\dfrac{AB\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\end{matrix}\right.\)

Dây CD bằng cạnh tam giác đều nội tiếp \(\Rightarrow\widehat{COD}=\dfrac{1}{3}.360^0=120^0\Rightarrow\widehat{COK}=60^0\)

\(\Rightarrow\left\{{}\begin{matrix}CD=2CK=2OC.sin\widehat{COK}=R\sqrt{3}\\OK=OC.cos\widehat{COK}=\dfrac{R}{2}\end{matrix}\right.\)

\(\Rightarrow HK=OH-OK=\dfrac{R}{2}\left(\sqrt{3}-1\right)\)

\(S=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{R^2}{2}\) (chắc có sự nhầm lẫn trong đáp án, không có hằng số \(\pi\) nào ở đây)