Hãy so sánh các số sau với 1 :
a) \(\left(4,1\right)^{2,7}\)
b) \(\left(0,2\right)^{0,3}\)
c) \(\left(0,7\right)^{3,2}\)
d) \(\left(\sqrt{3}\right)^{0,4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì 0,2<1
nên hàm số \(y=\left(0,2\right)^x\) nghịch biến trên R
mà -3<-2
nên \(\left(0,2\right)^{-3}>\left(0,2\right)^{-2}\)
b: Vì \(0< \dfrac{1}{3}< 1\)
nên hàm số \(y=\left(\dfrac{1}{3}\right)^x\) nghịch biến trên R
mà \(2000< 2004\)
nên \(\left(\dfrac{1}{3}\right)^{2000}>\left(\dfrac{1}{3}\right)^{2004}\)
c: Vì 3,2>1
nên hàm số \(y=\left(3,2\right)^x\) đồng biến trên R
mà \(1,5< 1,6\)
nên \(\left(3,2\right)^{1,5}< \left(3,2\right)^{1,6}\)
d: Vì \(0< 0,5< 1\)
nên hàm số \(y=\left(0,5\right)^x\) nghịch biến trên R
mà -2021>-2023
nên \(\left(0,5\right)^{-2021}< \left(0,5\right)^{-2023}\)
a)\(\left( { - 35,1} \right).\left( { - 64} \right):13 \approx \left( { - 35} \right).\left( { - 64} \right):13 \approx 172\)
b)\(\left( { - 8,8} \right).\left( { - 4,1} \right):{\rm{ }}2,6 \approx ( - 9).( - 4):3 = 12\)
c) \(7,9.\left( { - 73} \right):\left( { - 23} \right) \approx 8.( - 73):( - 23) \approx 25\).
a) \(\left(3,1\right)^{7,2}\) và \(\left(4,3\right)^{7,2}\)
Thấy 7,2 = 7,2 (số mũ)
Mà: \(3,1< 4,3\) (cơ số)
Vậy: \(\left(3,1\right)^{7,2}< \left(4,3\right)^{7,2}\)
b) \(\left(\dfrac{10}{11}\right)^{2,3}\) và \(\left(\dfrac{12}{11}\right)^{2,3}\)
Thấy 2,3 = 2,3 (số mũ)
Mà: \(\dfrac{10}{11}< \dfrac{12}{11}\)
Vậy: \(\left(\dfrac{10}{11}\right)^{2,3}\)\(< \) \(\left(\dfrac{12}{11}\right)^{2,3}\)
c) \(\left(0,3\right)^{0,3}\) và \(\left(0,2\right)^{0,3}\)
Thấy 0,3 = 0,3 (số mũ)
Mà: 0,3 > 0,2 (cơ số)
Vậy: \(\left(0,3\right)^{0,3}>\left(0,2\right)^{0,3}\)
a) \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,7 = 0,3;P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,2 = 0,8\)
\(\begin{array}{l}P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,7.0,2 = 0,14\\P\left( {\bar AB} \right) = P\left( {\bar A} \right)P\left( B \right) = 0,3.0,2 = 0,06\\P\left( {\bar A\bar B} \right) = P\left( {\bar A} \right)P\left( {\bar B} \right) = 0,3.0,8 = 0,24\end{array}\)
b) \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,5 = 0,5\)
\(\begin{array}{l}P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,3}}{{0,5}} = 0,6 \Rightarrow P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,6 = 0,4\\P\left( {\bar AB} \right) = P\left( {\bar A} \right)P\left( B \right) = 0,5.0,6 = 0,3\\P\left( {\bar A\bar B} \right) = P\left( {\bar A} \right)P\left( {\bar B} \right) = 0,5.0,4 = 0,2\end{array}\)
a) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) \Rightarrow P\left( B \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{3}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{23}}{{30}}\)
b) \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,5.P\left( A \right)\)
\(\begin{array}{l}P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) \Leftrightarrow 0,7 = P\left( A \right) + 0,5 - 0,5.P\left( A \right)\\ \Leftrightarrow 0,5P\left( A \right) = 0,2 \Leftrightarrow P\left( A \right) = 0,4\end{array}\)
a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)
b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)
\(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)
c) \(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{5\left(0,123-0,1+\frac{1}{11}+\frac{1}{12}\right)}=\frac{3}{5}\)
c) \(\frac{5}{8}+\frac{13}{10}-9+25=\frac{717}{40}\)
d) \(\sqrt{0,2^2}=\left|0,2\right|=0,2\)
e) \(\sqrt{\left(-0.3\right)^2}=0,3\)
g) \(-\sqrt{\left(-1.3\right)^2}=-1,3\)
h) \(-0,7\sqrt{\left(-0,7\right)^2}=-0,49\)
a) Ta thấy: \(\left(4,1\right)^0=1\)
Mà: 0 < 2,7 => \(\left(4,1\right)^{2,7}>1\)
b)Ta thấy: \(\left(0,2\right)^{0,3}< 0,2^0\)
\(\Rightarrow\left(0,2\right)^{0,3}< 1\)
c) Ta thấy: \(\left(0,7\right)^{3,2}< \left(0,7\right)^0\)
\(\Rightarrow\left(0,7\right)^{3,2}< 1\)
d) \(\left(\sqrt{3}\right)^{0,4}>\left(\sqrt{3}\right)^0\)
\(\Rightarrow\left(\sqrt{3}\right)^4>1\)