K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Câu hỏi của Lê Khánh Nhi - Toán lớp 7 - Học toán với OnlineMath sửa n thành x cho sửa cho nó thành lũy thừa luôn

6 tháng 8 2021

\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\) 

\(\Rightarrow\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) 

\(\Rightarrow\dfrac{4^5.4.6^5.6}{3^5.3.2^5.2}=2^n\) 

\(\Rightarrow\dfrac{\left(2.2\right)^5.2.2.\left(3.2\right)^5.3.2}{3^5.3.2^5.2}=2^n\) 

\(\Rightarrow\dfrac{2^5.2^5.2.2.3^5.2^5.3.2}{3^5.3.2^5.2}=2^n\) 

Rút gọn vế trái ta có :

\(2^5.2.2.^5=2^n\)

\(\Rightarrow2^{12}=2^n\) 

\(\Rightarrow n=12\) ( Thỏa mãn điều kiện \(n\in N\) ) 

Vậy n =12 

30 tháng 1 2022

=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)

=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)

=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.

Sửa đề: 3^5+3^5+3^5; 2^x

=>\(2^x=\dfrac{4^5\cdot4}{3^5\cdot3}\cdot\dfrac{6^5\cdot6}{2^5\cdot2}\)

 

=>\(2^x=\left(\dfrac{4}{3}\right)^6\cdot\left(\dfrac{6}{2}\right)^6=4^6=2^{12}\)

=>x=12

23 tháng 7 2023

\(a,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}+\dfrac{3.\left(\sqrt{6}-\sqrt{5}\right)}{6-5}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+3\left(\sqrt{6}-\sqrt{5}\right)\\ =\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\\ =4\sqrt{6}-2\sqrt{5}\)

\(b,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\sqrt{4+\sqrt{15}}}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{2}{\sqrt{8+2.\sqrt{3}.\sqrt{5}}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\left|\sqrt{3}-\sqrt{2}\right|}-\dfrac{2}{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\left|\sqrt{5}+\sqrt{3}\right|}\)

\(=\sqrt{5}+\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{3-2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{3}\\ =0\)

a: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+\dfrac{3\left(\sqrt{6}-\sqrt{5}\right)}{1}\)

\(=\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\)

\(=-2\sqrt{5}+4\sqrt{6}\)

b: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)

\(=\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{2}\)

=2căn 5-2căn 3

9 tháng 8 2015

vậy \(\frac{4}{5}\)quy đồng ra là \(\frac{96}{120}\)

\(\frac{5}{6}\)quy đồng ra là \(\frac{100}{120}\)

=> kết quả là \(\frac{97}{120};\frac{98}{120};\frac{99}{120}\) đúng k Nguyễn Đình Dũng

9 tháng 8 2015

câu này lm r mak 

có : \(\frac{4}{5}=\frac{96}{120}\)\(\frac{5}{6}=\frac{100}{120}\)

vậy ba phân số cần tìm là \(\frac{97}{120};\frac{98}{120};\frac{99}{120}\)

10 tháng 8 2015

Đổi lấy mẫu số chung   

29 tháng 10 2017

\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)

\(=\dfrac{4.4^5.6.6^5}{3.3^5.2.2^5}\)

\(=\dfrac{4^6.6^6}{3^6.2^6}\)

\(=\dfrac{2^6.2^6.2^6.3^6}{3^6.2^6}\)

\(=2^{12}=2^{3^4}=8^4=8^x\)

Vậy x = 4

20 tháng 2 2019

45+45+45+4535+35+35.65+65+65+65+65+6525+2545+45+45+4535+35+35.65+65+65+65+65+6525+25

=4.45.6.653.35.2.25=4.45.6.653.35.2.25

=46.6636.26=46.6636.26

=26.26.26.3636.26=26.26.26.3636.26

=212=234=84=8x=212=234=84=8x

Vậy x = 4

AH
Akai Haruma
Giáo viên
12 tháng 12 2017

Lời giải:

\(\text{VT}=\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)

\(=\frac{4.4^5}{3.3^5}.\frac{6.6^5}{2.2^5}=\frac{4^6.6^6}{3^6.2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)

Do đó: \(8^{|2x+6|}=2^{12}\Leftrightarrow 2^{3|2x+6|}=2^{12}\)

\(\Leftrightarrow 3|2x+6|=12\Leftrightarrow |2x+6|=4\)

\(\Rightarrow\left[{}\begin{matrix}2x+6=4\\2x+6=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)