K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Lời giải:
$\text{VT}=\frac{a(a+b+c)+bc}{b+c}+\frac{b(a+b+c)+ac}{a+c}+\frac{c(a+b+c)+ab}{a+b}$
$=\frac{(a+b)(a+c)}{b+c}+\frac{(b+a)(b+c)}{a+c}+\frac{(c+a)(c+b)}{a+b}$

Áp dụng BĐT AM-GM:

$\frac{(a+b)(a+c)}{b+c}+\frac{(b+a)(b+c)}{a+c}\geq 2\sqrt{(a+b)^2}=2(a+b)$

$\frac{(b+c)(b+a)}{a+c}+\frac{(c+a)(c+b)}{a+b}\geq 2\sqrt{(b+c)^2}=2(b+c)$

$\frac{(a+b)(a+c)}{b+c}+\frac{(c+a)(c+b)}{a+b}\geq 2\sqrt{(c+a)^2}=2(a+c)$

Cộng các BĐT trên theo vế và thu gọn:

$\text{VT}\geq 2(a+b+c)=2$

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)

\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành

Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

CMR: $xyz=1$

-----------------------------

Có:

$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$

\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)

\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)

Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$

$\Rightarrow 1=\frac{1}{x^2y^2z^2}$

$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)

Ta có đpcm.

 

NV
13 tháng 6 2021

\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)\)

Cộng vế với vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

1 tháng 9 2021

Cho a, b, c, d là các chữ số thỏa mãn: ab+ca=da ab-ca=a Tìm giá trị của d.