K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Đúng

b) Sai

c) Sai

d) Sai

26 tháng 5 2017

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

31 tháng 3 2017

a) Đúng, vì nếu gọi m là đường thẳng vuông góc với β và n là đường thẳng vuông góc với hai mặt phẳng song song α, γ thì góc (m, n) = (β, α) = (β, γ), mà β ⊥ α nên β ⊥ γ.

b) Sai, vì hai mặt phẳng (β), (γ) cùng vuông góc với mp(α) có thể song song hoặc cắt nhau.

31 tháng 3 2017

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có:

\(\left. \begin{array}{l}d \subset \left( {AMNC} \right)\\d\parallel \left( \alpha  \right)\\\left( \alpha  \right) \cap \left( {AMNC} \right) = AC\end{array} \right\} \Rightarrow d\parallel AC \Rightarrow MN\parallel AC\)

Mà \(a\parallel NC \Rightarrow MA\parallel NC\)

\( \Rightarrow AMNC\) là hình bình hành.

b) Gọi \(\left( \beta  \right)\) là mặt phẳng chứa \(b\) và song song với \(a\), \(c = \left( \alpha  \right) \cap \left( \beta  \right)\)

Ta có:

\(\left. \begin{array}{l}NC\parallel a\\N \in b\end{array} \right\} \Rightarrow NC \subset \left( \beta  \right)\)

\( \Rightarrow C \in \left( \alpha  \right) \cap \left( \beta  \right) \Rightarrow C \in c\)

Vậy điểm \(C\) luôn luôn chạy trên đường thẳng \(c\) là giao tuyến của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) cố định.

c) Trong mặt phẳng \(\left( \alpha  \right)\), kẻ \(AH \bot c\)

Vì \(c\) cố định nên \(AC \ge AH\)

\(AMNC\) là hình bình hành \( \Rightarrow MN = AC\)

Vậy \(MN \ge AH\)

Vậy \(MN\) nhỏ nhất khi \(C \equiv H\). Khi đó \(d\parallel AH\).

 

26 tháng 5 2017

a) Sai

b) Sai

c) Đúng

d) Sai

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì \(O \in \left( \alpha  \right)\) nên \(O\) là hình chiếu của chính nó lên mặt phẳng \(\left( \alpha  \right)\) theo phương \(d\).

Vì ba điểm \(O,A,B\) thẳng hàng nên ba điểm \(O,A',B'\) thẳng hàng.

\(AA'\parallel BB' \Rightarrow \frac{{AB}}{{OA}} = \frac{{A'B'}}{{OA'}} \Leftrightarrow \frac{{A'B'}}{{AB}} = \frac{{OA'}}{{OA}}\)

a) Để \(A'B' = AB\) thì \(OA' = OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = OA\).

b) Để \(A'B' = 2AB\) thì \(OA' = 2OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = 2OA\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(A,B,C\) là ba điểm chung của hai mặt phẳng phân biệt \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) nên \(A,B,C\) cùng nằm trên giao tuyến của hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) (theo tính chất 5).

Vậy \(A,B,C\) thẳng hàng.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc