K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

[Góc PR dự án Cuộc thi trí tuệ VICE]Các bạn đã đăng ký để trở thành VICE-er chưa nè? Nếu chưa thì đừng bỏ lỡ cơ hội này nha!Link: Đơn tuyển nhân sự cho VICE gen 1.0Đối tượng: toàn bộ những người dùng trên Facebook và nền tảng hoc24.vn, có niềm đam mê và niềm hứng thú với những môn học và cuộc thi, sự kiện online.Số lượng tuyển: tối đa 10 BTV ban Nội dung và 10 CTV Truyền thông.Vậy bạn sẽ được gì khi...
Đọc tiếp

[Góc PR dự án Cuộc thi trí tuệ VICE]

Các bạn đã đăng ký để trở thành VICE-er chưa nè? Nếu chưa thì đừng bỏ lỡ cơ hội này nha!

Link: Đơn tuyển nhân sự cho VICE gen 1.0

Đối tượng: toàn bộ những người dùng trên Facebook và nền tảng hoc24.vn, có niềm đam mê và niềm hứng thú với những môn học và cuộc thi, sự kiện online.

Số lượng tuyển: tối đa 10 BTV ban Nội dung và 10 CTV Truyền thông.

Vậy bạn sẽ được gì khi tham gia VICE?

+) Được làm việc trong môi trường hòa đồng, thân thiện.

+) Luôn được các founder ưu tiên hỗ trợ về các mảng kỹ năng quan trọng và cần thiết cho cuộc sống như Teamwork, Content, kĩ năng sử dụng các công cụ hỗ trợ cơ bản,...

+) Làm việc online sẽ giúp các BTV tiết kiệm thời gian đi lại và cân bằng việc học.

+) Nhận được một tấm vé trở thành thành viên chính thức của VICE nếu hoạt động tích cực.

+) Được cấp certification sau nhiệm kỳ, được chứng nhận bởi đội ngũ giáo viên và admin hoc24 - Trung tâm Khoa học Tính toán - Đại học Sư phạm Hà Nội.

+) Được nhận thưởng theo nhiệm kỳ nếu được các admin và ban quản trị hoc24 phê duyệt.

+) Ngoài ra bạn còn có cơ hội có crush nữa nè (Ad không hứa đâu nha :v Mọi sự tùy duyên :D)

Chi tiết, xem ngay tại: Cuộc thi Trí tuệ VICE - Bài viết | Facebook (https://www.facebook.com/vice.contest/posts/231764368841324)

undefined

7

Mình đăng kí được không ạ?

15 tháng 8 2021

Ps: Sẽ gỡ khỏi Câu hỏi hay sau 24-48h.

6 tháng 3 2021

Câu 285

a) ĐKXĐ: $x\le 10.$

 \(PT\Leftrightarrow\left(\dfrac{x^3+7x^2+18x+4}{\sqrt{10-x}}-10\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{\left(x^5+15x^4+100x^3+360x^2+740x+984\right)}{\sqrt{10-x}\left(x^3+7x^2+8x+4+10\sqrt{10-x}\right)}+1\right]=0\)

Rõ ràng biểu thức trong ngoặc vuông vô nghiệm.

Vậy $x=1$ (TMĐKXĐ)

b) Đặt $t=ab+bc+ca.$

 \(a,b,c\in\left[0,1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1.\) (1)

Từ (1) suy ra \(3abc\ge\sum c\left(a+b-1\right)=2t-\left(a+b+c\right)\ge2t-3\)

Cũng do $a,b,c\in \left[0,1\right]$ suy ra \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\Rightarrow abc\le\sum\left(ab-a\right)+1\)

Do đó"\(VT\le\sum\dfrac{a}{1+bc}+\sum\left(ab-a\right)+1\)

\(=\sum\left(\dfrac{a}{1+bc}-a\right)+\sum ab+1\)

\(=-abc\sum\dfrac{1}{1+bc}+ab+bc+ca+1\)

\(\le t+1-\dfrac{9abc}{t+3}\le t+1-\dfrac{3\left(2t-3\right)}{t+3}\le\dfrac{5}{2}\) 

\(\Leftrightarrow\left(2t-3\right)\left(3-t\right)\ge0\)

Do \(t\le\dfrac{\left(a+b+c\right)^2}{3}=3\) nên nếu $ab+bc+ca\ge \dfrac{3}{2}$ thì bất đẳng thức đúng.

Trong trường hợp ngược lại ta có \(VT\le t+1-\dfrac{9abc}{t+3}\le t+1\le\dfrac{3}{2}+1=\dfrac{5}{2}\) (đpcm)

Hoàn tất chứng minh.

Đẳng thức xảy ra khi (bạn đọc tự xét)

6 tháng 3 2021

290

Ta có \(\dfrac{a^4b}{a^2+1}=a^2b-\dfrac{a^2b}{a^2+1}\ge a^2b-\dfrac{a^2b}{2a}=a^2b-\dfrac{ab}{2}\)

Chứng minh tương tự ta được:  

\(\dfrac{b^4c}{b^2+1}\ge b^2c-\dfrac{bc}{2};\dfrac{c^4a}{c^2+1}\ge c^2a-\dfrac{ca}{2}\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{ab}{2}-\dfrac{bc}{2}-\dfrac{ca}{2}\)

Áp dụng bđt Cô-si:

\(a^2b+a^2b+b^2c\ge3\sqrt[3]{a^2b\cdot a^2b\cdot b^2c}=3\sqrt[3]{a^3b^3\cdot abc}=3ab\)

Tương tự: \(b^2c+b^2c+c^2a\ge3bc;c^2a+c^2a+a^2b\ge3ca\)

\(\Rightarrow a^2b+a^2b+b^2c+b^2c+b^2c+c^2a+c^2a+c^2a+a^2b\ge3ab+3bc+3ca\Rightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(ab+bc+ca\right)\Rightarrow a^2b+b^2c+c^2a\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{1}{2}\left(ab+bc+ca\right)\ge ab+bc+ca-\dfrac{1}{2}\left(ab+bc+ca\right)=\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{3}{2}\sqrt[3]{\left(abc\right)^2}=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

4 tháng 3 2021

Bài nào đó k ghi số nên không bt gọi ntn:

Chuẩn hóa x + y + z = 3. Ta cần cm \(x^2y+y^2z+z^2x+xyz\le4\).

Giả sử \(z=mid\left\{x,y,z\right\}\Rightarrow\left(x-z\right)\left(y-z\right)\le0\)

\(\Leftrightarrow xy+z^2\le xz+yz\)

\(\Leftrightarrow x^2y+xz^2\le x^2z+xyz\).

Từ đó \(x^2y+y^2z+z^2x+xyz\le x^2z+xyz+y^2z+xyz=z\left(x+y\right)^2\le\dfrac{\dfrac{\left(2z+x+y+x+y\right)^3}{27}}{2}=4\).

 

4 tháng 3 2021

Câu cuối:

Áp dụng BĐT BSC:

\(\dfrac{a}{\sqrt{a^2+b+c}}=\sqrt{\dfrac{a^2}{a^2+b+c}}=\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a^2+b+c\right)\left(1+b+c\right)}}\le\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a+b+c\right)^2}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự \(\dfrac{b}{\sqrt{b^2+c+a}}=\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\)\(\dfrac{c}{\sqrt{c^2+a+b}}=\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Khi đó \(VT\le\Sigma\left(\dfrac{a}{a+b+c}.\sqrt{1+b+c}\right)\)

Giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev với bộ \(\dfrac{a}{a+b+c};\dfrac{b}{a+b+c};\dfrac{c}{a+b+c}\) và \(\sqrt{1+b+c};\sqrt{1+c+a};\sqrt{1+a+b}\):

\(VT\le\dfrac{1}{3}\Sigma\dfrac{a}{a+b+c}.\Sigma\sqrt{1+a+b}=\dfrac{\Sigma\sqrt{1+a+b}}{3}\)

\(\le\dfrac{\sqrt{3\left(3+2a+2b+2c\right)}}{3}\)

\(\le\dfrac{\sqrt{9+6\sqrt{3\left(a^2+b^2+c^2\right)}}}{3}=\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

6 tháng 3 2021

C280:

Áp dụng BĐT AM-GM và BĐT BSC:

\(\dfrac{1}{\sqrt{x+3y}}+\sqrt{x+3y}\ge2\Rightarrow\dfrac{1}{\sqrt{x+3y}}\ge2-\sqrt{x+3y}\)

\(\dfrac{1}{\sqrt{y+3z}}+\sqrt{y+3z}\ge2\Rightarrow\dfrac{1}{\sqrt{y+3z}}\ge2-\sqrt{y+3z}\)

\(\dfrac{1}{\sqrt{z+3x}}+\sqrt{z+3x}\ge2\Rightarrow\dfrac{1}{\sqrt{z+3x}}\ge2-\sqrt{z+3x}\)

\(\Rightarrow P=\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\)

\(\ge6-\left(\sqrt{x+3y}+\sqrt{y+3z}+\sqrt{z+3x}\right)\)

\(\ge6-\sqrt{3\left(x+3y+y+3z+z+3x\right)}\)

\(=6-\sqrt{12\left(x+y+z\right)}=3\)

\(minP=3\Leftrightarrow a=b=c=\dfrac{1}{4}\)

6 tháng 3 2021

Bài 7) 

\(bđt\Leftrightarrow4\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)+6abc\)\(\Leftrightarrow ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\ge6abc\)

\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

(Đúng theo Cô Si)

"=" khi a=b=c=1

3 tháng 3 2021

Câu 5 em thấy thầy làm từ chiều, em nghĩ anh nên đổi câu khác:

Cho \(x,y,z\ge0\).Tìm giá trị lớn nhất :\(P=\dfrac{x}{x^2 y^2 2} \dfrac{y}{y^2 z^2 2} \dfrac{z}{z^2 x^2 2}\) - Hoc24

3 tháng 3 2021

Câu 266 là >= chứ nhỉ?

22 tháng 2 2021

Bài 129:

ĐKXĐ: \(x^2-y+1\ge0\)\(\left\{{}\begin{matrix}4x^2-2x+y^2+y-4xy=0\left(1\right)\\x^2-x+y=\left(y-x+3\right)\sqrt{x^2-y+1}\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow\left(2x-y\right)^2-\left(2x-y\right)=0\Leftrightarrow\left(2x-y\right)\left(2x-y-1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=2x-1\end{matrix}\right.\)

Nếu y=2x Thay vào (2) ta được: 

\(\Rightarrow x^2-x+2x=\left(2x-x+3\right)\sqrt{x^2-2x+1}\Leftrightarrow x^2+x=\left(x+3\right)\left|x-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=\left(x+3\right)\left(1-x\right)\left(x< 1\right)\left(3\right)\\x^2+x=\left(x+3\right)\left(x-1\right)\left(x\ge1\right)\left(4\right)\end{matrix}\right.\) 

Từ (3) \(\Rightarrow x^2+x=x-x^2+3-3x\Leftrightarrow2x^2+3x-3=0\) \(\Leftrightarrow x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{3}{2}=0\Leftrightarrow\left(x-\dfrac{3}{4}\right)^2=\dfrac{33}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{4}\left(L\right)\\x=\dfrac{3-\sqrt{33}}{4}\left(TM\right)\end{matrix}\right.\)\(\Rightarrow y=\) \(2\cdot\left(\dfrac{3-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\)

Từ (4) \(\Rightarrow x^2+x=x^2-x+3x-3\Leftrightarrow-x=-3\Leftrightarrow x=3\left(TM\right)\)\(\Rightarrow y=6\)

Nếu y=2x+1 Thay vào (2) ta được: 

\(\Rightarrow x^2-x+2x+1=\left(2x+1-x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x+1=\left(x+4\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.;x\ge-4\right)\)

\(\Rightarrow x^2+x+1-\left(x+4\right)\sqrt{x^2-2x}=0\Leftrightarrow2x^2+2x+2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}+4x-4\sqrt{x^2-2x}=2\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{2}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{2}\left(6\right)\end{matrix}\right.\)

Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2-\sqrt{2}\right)^2-2x\left(2-\sqrt{2}\right)\Leftrightarrow2x\left(2-\sqrt{2}-2\right)=4+2-4\sqrt{2}\Leftrightarrow-2\sqrt{2}x=6-4\sqrt{2}\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-3\sqrt{2}}{2}+2\right)+1=-3\sqrt{2}+5\)

Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2+\sqrt{2}\right)^2+2x\left(2+\sqrt{2}\right)\Leftrightarrow2x\left(2+\sqrt{2}-2\right)=6+4\sqrt{2}\Leftrightarrow2\sqrt{2}x=6+4\sqrt{2}\Leftrightarrow x=\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\)

 \(\Rightarrow y=2\left(\dfrac{3\sqrt{2}}{2}+2\right)+1=3\sqrt{2}+5\)

Vậy...

22 tháng 2 2021

Mik sorry mik làm nhầm

Nếu y=2x-1 Thay vào(2) ta được:

\(\Rightarrow x^2-x+2x-1=\left(2x-1+x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x-1=\left(x+2\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\right)\) \(\Leftrightarrow2x^2+2x-2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}+4x=6\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=6\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{6}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{6}\left(6\right)\end{matrix}\right.\) Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{6}\Rightarrow x^2-2x=x^2+2x\left(2-\sqrt{6}\right)+\left(2-\sqrt{6}\right)^2\Leftrightarrow2x\left(2-\sqrt{6}-2\right)=10-4\sqrt{6}\Leftrightarrow x=-\dfrac{5\sqrt{6}}{6}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-5\sqrt{6}}{6}+2\right)-1=-\dfrac{5\sqrt{6}}{3}+3\)

Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{6}\Rightarrow x^2+2x=x^2+2x\left(2+\sqrt{6}\right)+\left(2+\sqrt{6}\right)^2\Leftrightarrow2x\left(2+\sqrt{6}-2\right)=10+4\sqrt{6}\Leftrightarrow x=\dfrac{5\sqrt{6}}{6}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{5\sqrt{6}}{6}+2\right)-1=\dfrac{5\sqrt{6}}{3}+3\) Vậy...

23 tháng 2 2021

c131-136 nhỏ ko đọc đc

 

21 tháng 2 2021

1: ĐKXĐ: a,b>0, a\(\ne b\)

\(\Rightarrow Q=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(a\sqrt{a}+b\sqrt{b}\right)}+\dfrac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}=\dfrac{a\sqrt{a}-3a\sqrt{b}+3b\sqrt{a}-b\sqrt{b}+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) \(=\dfrac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{1}{\sqrt{a}+\sqrt{b}}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=0\) 

\(\Rightarrow Q\) ko phụ thuộc vào a,b Vậy...

21 tháng 2 2021

2: Ta có \(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\) 

\(\Rightarrow P=\dfrac{x+y}{xy}\cdot\sqrt{x^2y^2+\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}}\ge\dfrac{2\sqrt{xy}}{xy}\cdot\sqrt{17}\cdot\sqrt[34]{\dfrac{x^2y^2}{16^{16}}}=\sqrt{17}\cdot\dfrac{2}{\sqrt{xy}}\cdot\sqrt[17]{\dfrac{xy}{16^8}}\) \(=\sqrt{17}\cdot\sqrt[17]{\dfrac{2^{17}}{\sqrt{x^{17}y^{17}}}\cdot\dfrac{\sqrt{x^2y^2}}{2^{32}}=\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{x^{15}y^{15}}\cdot2^{15}}}\ge\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{\dfrac{1}{4^{15}}}\cdot2^{15}}}=\sqrt{ }17}\)

Dấu  = xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\) Vậy...

20 tháng 2 2021

Việc bây giờ có những bộ phận anti fan quá khích lập group anti đã không còn quá xa lạ với mọi người. Ở đây mình muốn nói đến việc anti bây giờ đôi khi không cần ghét bất cứ 1 người nổi tiếng, họ cũng lập gr anti cả những người không nổi tiếng như trên ảnh trong khi họ không làm gì sai cả. Không chỉ là những gr anti, họ còn nói những từ ngữ, chế ảnh, hành động không mấy lành mạnh. Những việc làm quá khích như vậy ảnh hưởng lớn đến tinh thần, hình ảnh của các bạn 2k5 nói chung và khiến cho các bạn nhỏ tuổi có cái nhìn không tốt. Chúng ta cần lên tiếng phản đối những bộ phận anti không lành mạnh và luôn xây dựng cho mình hình ảnh đẹp để chứng minh những điều họ làm là sai 

P/s viết ''ngựa ngựa'' 1 tí ko biết có sao ko :)))

20 tháng 2 2021

Minh Nguyệt CTV                              cj e van vo kinh the :)))

25 tháng 2 2021

Mọi cố gắng đều không bao giờ vô nghĩa, cố gắng học, cố gắng làm, tuy sự cố gắng có thể chưa nhiều nhưng ''tích tiểu thành đại'' một lúc nào đó nó sẽ thành công. Từ bức ảnh này có thể thấy, mỗi con số vô cùng nhỏ nhưng số mũ lại rất lớn, làm cho kết quả cũng lớn theo. Số mũ này còn tượng trưng cho 365 ngày trong năm, mỗi ngày là con số kia, sau 1 năm, kết quả đã lớn đến nhường nào. Đôi khi trong quá trình cố gắng, gặp khó khăn, nếu chúng ta từ bỏ, thì cố gắng từ trước đến này cũng bằng không. Bản thân mình trước kia cũng từng là một đứa nghiện game, truyện tranh đến mức bị mẹ dọa cho nghỉ học, bản thân mình lúc đó cũng chưa nghĩ gì nhiều, nhưng thấy kết quả học chưa tốt, bố mẹ lo lắng, mình đã bỏ qua tất cả, cố gắng học từng chút một, có thể là giờ cái sự cố gắng của mình nó chưa lớn như người khác nhưng mình chưa từ bỏ nó một lần nào, mình hi vọng sẽ có một ngày nào mình thành công trên con đường mình đã chọn. Nói chung lại, cố gắng sẽ khiến bản thân ta thay đổi, thành công sẽ đến gần hơn 

P/s lại viết ''ngựa ngựa'' đây :)))

 

Cuộc thi có vẻ rất vui và thú vị :^