Cho 3 đường thẳng \(d_1;d_2;d_3\) không cùng nằm trong một mặt phẳng và cắt nhau từng đôi một. Chứng minh ba đường thẳng trên đồng quy ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$M\in d_1$ nên gọi tọa độ của $M$ là $(2a+3,a)$
Khoảng cách từ $M$ đến $(d_2)$ là:\(\frac{|2a+3+a+1|}{\sqrt{1^2+1^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow |3a+4|=1\Leftrightarrow 3a+4=\pm 1\)
\(\Leftrightarrow a=-1; a=\frac{-5}{3}\)
Thay vào ta có tọa độ của điểm $M$
Lấy \(M\in d_1\Rightarrow M\left(2y+3;y\right)\)
Ta có: \(d\left(M;d_2\right)=\dfrac{1}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2y+3+y+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\dfrac{\left|3y+4\right|}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow\left|3y+4\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}3y+4=1\\3y+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{5}{3}\end{matrix}\right.\)
\(y=1\Rightarrow M\left(5;1\right)\)
\(y=-\dfrac{5}{3}\Rightarrow M\left(-\dfrac{1}{3};-\dfrac{5}{3}\right)\)
Tọa độ giao điểm của (d2) và (d3) là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}x+1=-x+3\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Thay x=1 và y=2 vào (d1), ta được:
\(\left(m^2-1\right)+m^2-5=2\)
=>\(2m^2=8\)
=>\(m^2=4\)
=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)
- Vẽ đồ thị hàm số \(y = x + 3\)
Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} = - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).
- Vẽ đồ thị hàm số \(y = - x + 3\)
Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).
Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).
Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).
Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).
a/ \(y=-2x-5\)
\(\Rightarrow\left\{{}\begin{matrix}2m=-2\\m-1=-5\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
b/ \(y=x-2\)
\(\Rightarrow2m.1=-1\Rightarrow m=-\frac{1}{2}\)
Bài 2:
Hệ phương trình tọa độ giao điểm M:
\(\left\{{}\begin{matrix}y=3x-2\\2y-x=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)
Bài 3:
Hệ pt tọa độ giao điểm A của d1 và d2:
\(\left\{{}\begin{matrix}y=2x-3\\y=x-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow d_3\) qua A
\(\Rightarrow\left(m-1\right).2+2=1\Rightarrow m=\frac{1}{2}\)
a:
b: Phương trình hoành độ giao điểm là:
2x-1=x+2
=>x=3
Thay x=3 vào y=x+2, ta được:
y=3+2=5
c: Vì (d)//(d1) nên (d): y=2x+b
Thay x=1 và y=0 vào (d), ta được:
b+2=0
=>b=-2
=>y=2x-2
Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).
Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).
a/ Gọi A là giao điểm d1 và d2 \(\Rightarrow\) pt hoành độ của A:
\(x+2=5-2x\Rightarrow3x=3\Rightarrow x=1\Rightarrow y=3\)
\(\Rightarrow A\left(1;3\right)\)
Thay tọa độ A vào pt d3: \(3=3.1\) (thỏa mãn) \(\Rightarrow A\in d_3\)
Vậy d1, d2, d3 đồng quy tại A
b/ Để \(d_1;d_2;\Delta\) đồng quy \(\Leftrightarrow\Delta\) đi qua A
\(\Leftrightarrow3=m.1+m-5\Rightarrow m=4\)
b: Để hai đường thẳng cắt nhau tại một điểm trên trục tung thì m-1=15
hay m=16
Gọi , , là ba đường thẳng đã cho. Gọi I = ∩
Ta chứng minh I ∈
I ∈ => I ∈ (β) = ( , )
I ∈ => I ∈ (ɣ) = ( , )
Từ đó suy ra, I ∈