K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

16 tháng 12 2018

a) E ∈ AB mà AB ⊂ (ABC)

⇒ E ∈ (ABC)

F ∈ AC mà AC ⊂ (ABC)

⇒ F ∈ (ABC)

Đường thẳng EF có hai điểm E, F cùng thuộc mp(ABC) nên theo tính chất 3 thì EF ⊂ (ABC).

b) I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD) (1)

I ∈ EF mà EF ⊂ (DEF) nên I ∈ (DEF) (2)

Từ (1) và (2) suy ra I là điểm chung của hai mặt phẳng (BCD) và (DEF).

22 tháng 9 2023

Tham khảo:

a) Ta có các điểm D, E đều nằm trong mp(SAB) nên đường thẳng DE nằm trong mp (SAB).

b) F thuộc AB suy ra F nằm trong mp (SAB).

F thuộc DE suy ra F nằm trong mp(CDE).

Do đó, F là điểm chung của hai mặt phẳng (SAB) và (CDE).

21 tháng 10 2023

1:

a: \(D\in SA\subset\left(SAB\right);E\in SB\subset\left(SAB\right)\)

Do đó: \(DE\subset\left(SAB\right)\)

b: \(F\in AB\subset\left(SAB\right)\)

\(F\in DE\subset\left(CDE\right)\)

Do đó: \(F\in\left(SAB\right)\cap\left(CDE\right)\)

2:

\(N\in AB\subset\left(ABM\right);N\in CD\subset\left(SCD\right)\)

Do đó: \(N\in\left(ABM\right)\cap\left(SCD\right)\)

\(M\in SC\subset\left(SCD\right);M\in MB\subset\left(ABM\right)\)

Do đó: \(M\in\left(ABM\right)\cap\left(SCD\right)\)

Do đó: \(\left(ABM\right)\cap\left(SCD\right)=MN\)

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

    

 

a) Ta có AM cắt (BCD) tại C suy ra AM không song song với (BCD).

b) M, N là trung điểm của AC, AD nên MN là đường trung bình của tam giác ACD suy ra MN // CD.

Mà CD thuộc (BCD) nên MN // mp(BCD).

13 tháng 2 2022

E tk nhe:

undefined

31 tháng 3 2017

a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'

=> OO'// d // b mà O BD mp (b;d)

=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm

b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành