SỬ DỤNG PHƯƠNG PHÁP ĐƯA VỀ PHƯƠNG TRÌNH TÍCH
\(\frac{x^2}{3x-2}-\sqrt{3x-2}=1-x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Tự đặt đk
\(x^{^2}+5\sqrt{x-3}=21\\\Leftrightarrow x^{^2}-9+5\sqrt{x-3}=12 \)
Đặt \(a=\sqrt{x-3}\) \(\left(a\ge0\right)\) Phương trình trở thành:
\(a^{^2}\left(a^{^2}+6\right)+5a=12\\ \Leftrightarrow a^{^4}+6a^{^2}+5a-12=0\\ \Leftrightarrow a^{^4}-a^{^3}+a^{^3}-a^{^2}+7a^{^2}-7a+12a-12=0\\ \Leftrightarrow\left(a-1\right)\left(a^{^3}+a^{^2}+7a+12\right)=0\\ \Leftrightarrow a=1\left(tmdk\right)\)
Ta có: vì \(a\ge0\) nên \(a^{^3}+a^{^2}+7a+12\ne0\)
Với a = 1 ta có x=4 (tmdk)
\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{5;-2\right\}\)
\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)
Câu d xem lại đề
Bạn tự xét ĐKXĐ nhé ^^
Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)-\left[\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right]+\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)=0\)
\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-3-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-2\right)\left(x-1\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x+3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)Tới đây bạn tự làm tiếp ^^
Dài quá ^^
a) \(\sqrt{3x-2}-\sqrt{2x+3}=\frac{3x-2-2x-3}{\sqrt{3x-2}+\sqrt{2x+3}}=\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}\)
\(\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}=\frac{x-5}{2}\Leftrightarrow\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{x-5}{2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{1}{2}\right)=0\). Do \(\frac{1}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{1}{2}\ne0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\). Vậy tập nghiệm của pt \(S=\left\{5\right\}\)
b) \(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)
\(\Leftrightarrow x^2\sqrt{2}+8\sqrt{2}=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chắc cũng dùng trục căn thức ở mẫu nhưng mình chả biết làm thế nào :v
a, đk \(x\ge\frac{2}{3}\)
\(\sqrt{3x-2}-\sqrt{2x+3}=\frac{x-5}{2}\)
đặt \(\hept{\begin{cases}\sqrt{3x-2}=a\\\sqrt{2x+3}=b\end{cases}\left(a;b\ge0\right)}\)
pt trở thành : \(a-b=\frac{a^2-b^2}{2}\) \(\Leftrightarrow a^2-b^2=2a-2b\)
\(\Leftrightarrow a^2-2a-b^2+2b=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a-1-b+1\right)\left(a-1+b-1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)
th1 : a - b = 0 <=> a = b hay \(\sqrt{3x-2}=\sqrt{2x+3}\)
\(\Leftrightarrow3x-2=2x+3\Leftrightarrow x=5\left(tm\right)\)
th2 : a + b - 2 = 0 hay \(\sqrt{3x-2}+\sqrt{2x+3}-2=0\)
\(\Leftrightarrow\sqrt{3x-2}=2-\sqrt{2x+3}\left(đk:x\le\frac{1}{2}\left(voli\right)\right)\)
vậy x = 5
đk : x > 2/3
\(\frac{x^2}{3x-2}-\sqrt{3x-2}=1-x\)
đặt \(\sqrt{3x-2}=a\left(a>\right)\)
pt trở thành \(\frac{x^2}{a^2}-a=1-x\) vi a^2 > 0
\(\Leftrightarrow x^2-a^3=a^2-a^2x\)
\(\Leftrightarrow a^3-a^2x+a^2-x^2=0\)
\(\Leftrightarrow a^2\left(a-x\right)+\left(a-x\right)\left(a+x\right)=0\)
\(\Leftrightarrow\left(a^2+a+x\right)\left(a-x\right)=0\)
th1 : \(a-x=0\Leftrightarrow a=x\) nên :
\(\sqrt{3x-2}=x\)
\(\Leftrightarrow x^2=3x-2\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)
th2 : \(a^2+a+x=0\Leftrightarrow3x-2+\sqrt{3x-2}+x=0\)
có x > 2/3 => 3x -2 > 0 => 3x - 2 + x > 2/3
=> pt vô nghiệm
vậy x = 1 hoặc x = 2