Chứng minh rằng nếu :
\(\dfrac{bz+cy}{x\left(-ax+by+cz\right)}\) = \(\dfrac{cx+az}{y\left(ax-by+cz\right)}\) = \(\dfrac{ay+bx}{z\left(ax+by-cz\right)}\)
thì : \(\dfrac{x}{a\left(b^2+c^2-a^2\right)}\) = \(\dfrac{y}{b\left(a^2+c^2-b^2\right)}\) = \(\dfrac{z}{c\left(a^2+b^2-c^2\right)}\)
Help me
Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina
Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron
Akai Haruma Võ Đông Anh Tuấn
mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)