Biết \(\sqrt[3]{5}=1,709975947........\)
Viết gần đúng \(\sqrt[3]{5}\) theo nguyên tắc làm tròn với hai, ba, bốn chữ số thập phân và ước lượng sai số tuyệt đối ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Làm tròn với hai chữ số thập phân: ∛5 = 1,71.
Sai số tuyệt đối: |1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
– Làm tròn với ba chữ số thập phân: ∛5 = 1,710
Sai số tuyệt đối: |1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
– Làm tròn với bốn chữ số thập phân: ∛5 = 1,7100
|1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
Nếu lấy \(\sqrt{3}\) bằng \(1,73\) thì vì \(1,73< \sqrt{3}=1,7320508...< 1,74\) nên ta có \(\left|\sqrt{3}-1,73\right|< \left|1,73-1,74\right|=0,01\)
Vậy sai số tuyệt đối trong trường hợp này không vượt quá \(0,001\)
Nếu lấy \(\sqrt{3}\) bằng \(1,7321\) thì sai số tuyệt đối không vượt quá 0,0001
Nếu 3 bằng 1,73 thì vì 1,73 < 3 = 1,7320508... < 1,74 nên ta có
| 3 - 1 , 73 | < | 1 , 73 - 1 , 74 | = 0 , 01
- Dùng máy tính ta có: ∛12 ≈ 2,289428485.
- Làm tròn đến 3 chữ số phần thập phân là: ∛12 ≈ 2,289.
- Sai số tuyệt đối: Δα = |2,289 – ∛12 | < |2,289 – 2,2895| < 0,0005.
Vậy sai số tuyệt đối không vượt quá 0,0005.
a) Quy tròn số \(\overline a = \sqrt 3 \) đến hàng phần trăm, ta được số gần đúng là \(a = 1,73\)
Vi \(a < \overline a < 1,735\) nên \( \overline a -a < 1,735 -1,73 = 0,005\) do đó sai số tuyệt đối là
\({\Delta _a} = \left| {\overline a - a} \right| < 0,005.\)
Sai số tương đối là \({\delta _a} \le \frac{{0,005}}{{1,73}} \approx 0,3\% \)
b) Hàng của chữ số khác 0 đầu tiên bên trái của d=0,003 là hàng phần nghìn.
Quy tròn \(\overline a \) đến hàng phần nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,732\).
c) Độ chính xác đến hàng phần chục nghìn
Quy tròn \(\overline a \) đến hàng phần chục nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,7321\).
a) Chia cả 2 vế cho 2 ta được : \(x=\dfrac{\sqrt{13}}{2}\approx1,803\)
b) Chia cả 2 vế cho -5 ta được : \(x=\dfrac{1+\sqrt{5}}{-5}\approx-0,647\)
c) Chia cả 2 vế cho \(\sqrt{2}\) ta được: \(x=\dfrac{4\sqrt{3}}{\sqrt{2}}\approx4,889\)
≈ 1,71 với sai số mắc phải 0,01;
≈ 1,710 với sai số mắc phải 0,001;
≈ 1,7100 với sai số mắc phải 0,0001.