K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)

hay \(AB^2=BH\cdot BC\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

18 tháng 12 2022

b: Tọa độ giao là:

5x-4=2x+2 và y=2x+2

=>x=2 và y=6

c: Vì (d2)//d nên (d2): y=2x+b

Thay x=1 và y=3 vào (d2), ta được:

b+2=3

=>b=1

a: Thay x=25 vào A, ta được:

\(A=\dfrac{5-1}{5+1}=\dfrac{4}{6}=\dfrac{2}{3}\)

b: \(B=\dfrac{x-\sqrt{x}-x-2\sqrt{x}-1-2\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-5\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{-5}{\sqrt{x}-1}\)

c: \(P=AB=\dfrac{-5}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{-5}{\sqrt{x}+1}\)

Để P<-1 thì P+1<0

\(\Rightarrow-5+\sqrt{x}+1< 0\)

\(\Leftrightarrow\sqrt{x}< 4\)

=>x<16

mà x là số nguyên lớn nhất

nên x=15

28 tháng 2 2022

u là trời, em cám ơn nhiều ạ, anh/chị giải nhanh quá

12 tháng 11 2021

a: \(\widehat{C}=30^0\)

NV
21 tháng 1 2024

d.

Theo chứng minh câu c ta có tam giác NPO cân tại N

Mà I là trung điểm OP \(\Rightarrow NI\) là đường trung tuyến

Trong tam giác NPO cân tại N, NI là trung tuyến nên nó đồng thời là phân giác góc \(\widehat{ONP}\)

Hay NI là phân giác trong góc \(\widehat{MNP}\)

Lại có ND cũng là phân giác trong góc \(\widehat{MNP}\) (giả thiết)

\(\Rightarrow\) Đường thẳng NI trùng đường thẳng ND

Hay 3 điểm N, D, I thẳng hàng

21 tháng 1 2024

Cần làm câu c như thế nào để dẫn ra kết quả câu d được ạ?

NV
18 tháng 8 2021

MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB

Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)

\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)

Do MN song song PQ \(\Rightarrow\) MNQP là hình thang

Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)

Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)

\(\Rightarrow\) Thiết diện là hình thang cân

\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)

Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)

\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

NV
18 tháng 8 2021

undefined

a) Thay \(x=\dfrac{1}{4}\) vào Q, ta được:

\(Q=\dfrac{1}{\dfrac{1}{4}\cdot\dfrac{1}{2}+27}=\dfrac{1}{27+\dfrac{1}{8}}=\dfrac{8}{217}\)

b) Ta có: \(P=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{2-\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-9+\sqrt{x}+3-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{6-\left(\sqrt{x}+3\right)}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)

24 tháng 7 2021

Tích giúp mình nhé tks^^undefinedundefined

24 tháng 7 2021

Chị ghi rõ hơn đc ko ạ =)))