Thử IQ mấy bạn nào, bài nãy dễ òm í.
Tính giá trị của x để:
/ x - 2 / = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12000 - ( 1500 . 2 + 1800 . 3 + 1800 . 2 : 3 )
= 12000 - ( 3000 + 5400 + 3600 : 3 )
= 12000 - ( 3000 + 5400 + 1200 )
= 12000 - 9600
= 2400
12 000 - (1500 . 2 + 1800 . 3 + 1800 . 2 : 3)
=12 000 - (3000 + 5400 + 3600 : 3)
= 12 000 - (3000 + 5400 + 1200)
= 12 000 - 9600 = 2400
a) Ta có: \(P=\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\cdot\dfrac{1-x^2}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\cdot\dfrac{-\left(x-1\right)\left(x+1\right)}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+2\right)\left(x-1\right)}{2\left(x+1\right)}\)
\(=\dfrac{2\left(x-2\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2\cdot\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^2-2x+1\right)\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3+2x^2-2x^2-4x+x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3-3x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-x^3+3x-2}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^3+5x-6}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-\left(x^3-5x+6\right)}{2\left(x-1\right)\left(x+1\right)}\)
Q = 2x2 - 6x
= 2 ( x2 - 3x + 9/4 ) - 9/2
= 2 ( x - 3/2)2 - 9/2
+) Ta có: 2( x - 3/2)2 \(\ge\) 0
=> 2(x - 3/2)2 - 9/2 \(\ge\) -9/2
Vậy GTNN của Q = -9/2 khi x = 3/2
^^
Rảnh nhỉ?
Gá trị nhỏ nhất là 0
Luôn luôn là thế vì giá trị tuyệt đối ko thể là số âm mà 0 ko phải là âm cũng ko phải là dương
Dù sao giá trị nhỏ nhất của giá trị tuyệt đối lun là 0
A=+. ... Ta có: A = | x - 500 | + | x - 300 |. A = | x - 500 | + | 300 - x |. Áp dụng: | x | + | y | ≥ ≥ | x + y |......
Bn tự làm tiếp nhé . Nếu ko hãy vào đây tham khảo nek
Câu hỏi của chi trần - Toán lớp 6 | Học trực tuyến
Hok tốt
# MissyGirl #
Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd
\(S=ab^2+bc^2+ca^2-abc\)
WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)
\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)
Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)
WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương
\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\)
ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng
đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0)
bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)
Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD
a: ĐKXĐ: x+1<>0
=>x<>-1
b: x^2+x=0
=>x=0(nhận) hoặc x=-1(loại)
Khi x=0 thì \(A=\dfrac{2\cdot0-3}{0+1}=-3\)
c: Để A nguyên thì 2x-3 chia hết cho x+1
=>2x+2-5 chia hết cho x+1
=>-5 chia hết cho x+1
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
d: Để A>0 thì (2x-3)/(x+1)>0
=>x>3/2 hoặc x<-1
\(\left|x-2\right|=3\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=3+2\\x=-3+2\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(\left|x-2\right|=3\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-5\\x=-1\end{matrix}\right.\)