C/m rằng: \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)
$\Rightarrow A< \frac{1}{50}$
Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)
Ta có:
\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)
\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)
\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{50}\)
=> ĐPCM.
\(\text{Đặt:}S=\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\Rightarrow49S=1-\frac{1}{7^2}+.....-\frac{1}{7^{98}}\Rightarrow49S+S=50S=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-....-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\right)=1-\frac{1}{7^{100}}< 1\Rightarrow S< \frac{1}{50}\left(\text{đpcm}\right)\)
A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.
Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)
\(=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
Đặt \(A=\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}\)
\(7A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{99}}\)
\(\Rightarrow7A-A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)
\(\Rightarrow6A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)
\(\Rightarrow A=\dfrac{1}{6}\left(\dfrac{1}{7}-\dfrac{1}{7^{100}}\right)\)
Bài 3
a,26/100+0,009+41/100+0,24
0,26+0,09+0,41+0,24
(0,26+0,24)+(0,09+0,41)
0,5+0,5
=1
b,9+1/4+6+2/7+7+3/5+8+2/3+2/5+1/3+5/7+3/4
(9+6+7+8)+(2/7+5/7)+(1/4+3/4)+(3/5+2/5)+(2/3+1/3)
30+1+1+1+1
=34
Bài 4,5 khó quá mik ko bít lamf^^))
Bài 4: a, \(\dfrac{2008}{2009}\) < 1; \(\dfrac{10}{9}\) > 1
\(\dfrac{2008}{2009}\) < \(\dfrac{10}{9}\)
b, \(\dfrac{1}{a+1}\) và \(\dfrac{1}{a-1}\)
Ta có: a + 1 > a - 1 ⇒ \(\dfrac{1}{a+1}\) < \(\dfrac{1}{a-1}\)
Đặt \(S=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)
\(\Rightarrow\dfrac{S}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\)
\(\Rightarrow S+\dfrac{S}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\right)\)
\(\Leftrightarrow\dfrac{50S}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}< \dfrac{1}{50}\)
\(\Leftrightarrow S< \dfrac{1}{50}\)
Vậy \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\) (Đpcm)