Tìm n để \(-n^2+3n-7\) chia hết cho \(n+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
(3n+2):(n-1) = 3 + 5/(n-1)
a ) Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
n + 4 chia hết hco n
=> 4 chia hết cho n
=> n thuộc {1;2;4}
3n + 7 chia hết cho n
=> 7 chia hết cho n
=> n thuộc {1;7}
n + 6 chia hết ho n + 2
n + 2 + 4 chia hết cho n + 2
4 chia hết cho n + 2
U(4) = {1;2;4}
n + 2 = 1
=> n = -1
n + 2 = 2
=> n = 0
n + 2 = 4
=> n = 2
Vậy n thuộc {0;2}
a)3n+2 chia hết cho 2n-1
6n-3n+2 chia hết cho 2n-1
3(2n-1)+2 chia hết cho 2n-1
=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc{2;0;3;-1}
=>n thuộc{1;0}
b)n2-7 chia hết cho n+3
n2+3-10 chia hết cho n+3
n(n+3)-10n chia hết cho n+3
=>10n chia hết cho n+3
10(n+3)-30 chia hết cho n+3
=>30 chia hết cho n+3 hay n+3 thuộc Ư(30)={1;-1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30}
=>n thuộc{-2;-4;-1;-5;0;-6;2;-8;3;-9;7;-13;12;-18;27;-33}
c) n+5 chia hết cho n-2
=>(n-2)+7 chia hết cho n-2
=>7 chia hết cho n-2 hay n-2 thuộc Ư(7)={1;-1;7;-7}
=>n thuộc{3;1;9;-5}
bạn ghi thiếu đề, n thuộc Z hay N
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
\(n\in\left\{-7;-3;-1;3\right\}\)