cho đa thức A(x)=-x2+3x-2
a)chứng minh đa thức trên vô nghiệm
b)tìm gtln của A(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
a) Ta có:
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)
\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
\(a,P\left(x\right)=2x^3-3x+7-x=2x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
\(M\left(x\right)=2x^3-4x+7+\left(-5x\right)^3-x^2+4x-5=-3x^3-x^2+2\)
\(N\left(x\right)=2x^3-4x+7-\left(-5x\right)^3+x^2-4x+5=7x^3+x^2-8x+12\)
b,\(M\left(x\right)=-3x^3-x^2+2=0\)
Nghiệm xấu lắm bạn
a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)
\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)
\(P=-\frac{2}{5}x^5y^7\)
Hệ số là \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)
Bậc của đơn thức là 12
b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :
\(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)
\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)
\(\Leftrightarrow-5+5=0\)
\(\Leftrightarrow0=0\)(TM)
Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)
Thay \(x=-1\)vào đơn thức M(x), ta được :
\(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)
\(\Leftrightarrow2+7+5=0\)
\(\Leftrightarrow14=0\)(KTM)
Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)
b)
\(-x^2+3x-2=-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{3.\left(-1\right).\left(-2\right)-9}{2.\left(-2\right)}\\ =-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\)
vì \(-\left(x+\dfrac{3}{-2}\right)^2\le0\) nên
\(-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
vậy MAXA = 0,25 tại x=1,5
bạn giải thích thêm cái dòng đầu tiên đk k