Cho \(\Delta ABC\) nhọn có AD, BK, CE là ba đường cao của tam giác. Gọi H là giao điểm của AD, BK, CE. Chứng minh \(\dfrac{HD}{AD}=\dfrac{HK}{BK}=\dfrac{HE}{CE}=1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
20 tháng 11 2017
\(=\frac{\frac{1}{2}BC.HM}{\frac{1}{2}BC.AM}+\frac{\frac{1}{2}AB.HE}{\frac{1}{2}AB.CE}+\frac{\frac{1}{2}AC.HK}{\frac{1}{2}AC.BK}=\frac{SHBC}{SABC}+\frac{SHAB}{SABC}+\frac{SHAC}{SABC}=\frac{SABC}{SABC}=1\)
TT
1 tháng 5 2023
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
MH
14 tháng 11 2021
Bạn xem ở đây nha
https://olm.vn/hoi-dap/detail/1162094338340.html