GIÚ MÌN:
CHO DÃY 1;4;7;10;13;...
NẾU TA VIẾT LIỀN CÁC CHỮ SỐ NÀY LẠI THÀNH 1 SỐ THÌ CHỮ SỐ THỨ 302 CỦA SỐ TẠO THÀNH LÀ SỐ MẤY?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=1+3+3^2+3^3+3^4+...+3^{2022}\)
\(3D=3.\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)
\(3D=3+3^2+3^3+3^4+3^5+...+3^{2023}\)
\(3D-D=\left(3+3^2+3^3+3^4+3^5+...+3^{2023}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)
\(2D=\left(3^{2023}-1\right)\)
\(D=\left(3^{2023}-1\right):2\)
3D=3+3^2+...+3^2023
=>2D=3^2023-1
=>\(D=\dfrac{3^{2023}-1}{2}\)
XI
1 more exciting
2 most boring
3 fathest
4 well
5 happier
6 worst
7 colder
8 most difficult
9 better
10 carefully
XII
1 C
2 C
3 B
4 A
5 A
6 B
9 A
10 C
9 B
Câu 4 :
n H2 = 1,68/22,4 = 0,075(mol)
2R + 2HCl $\to$ 2RCl + H2
n R = 2n H2 = 0,15(mol)
=> M R = 3,45/0,15 = 23(Natri)
Câu 5 : D
Lời giải:
Theo định lý Viet:
$x_1+x_2=3$
$x_1x_2=m^2$
Khi đó:
$|x_1^2+x_1x_2+3x_2-m^2-2m-1|> 6-m^2$
$\Leftrightarrow |x_1^2+x_1x_2+(x_1+x_2)x_2-m^2-2m-1|> 6-m^2$
$\Leftrightarrow |x_1^2+2x_1x_2+x_2^2-m^2-2m-1|> 6-m^2$
$\Leftrightarrow |(x_1+x_2)^2-m^2-2m-1|> 6-m^2$
$\Leftrightarrow |9-m^2-2m-1|> 6-m^2$
$\Leftrightarrow |m^2+2m-8|> 6-m^2$
Nếu $m^2+2m-8\geq 0$ thì:
$m^2+2m-8> 6-m^2$
$\Leftrightarrow 2m^2+2m-14>0$
$\Leftrightarrow m^2+m-7>0$
$\Leftrightarrow m< \frac{-1-\sqrt{29}}{2}$ hoặc $m> \frac{-1+\sqrt{29}}{2}$
Kết hợp với $m^2+2m-8\geq 0$ suy ra $m\leq -4$ hoặc $m> \frac{-1+\sqrt{29}}{2}$
Nếu $m^2+2m-8<0$ thì:
$-(m^2+2m-8)> 6-m^2$
$\Leftrightarrow m< 1$
Kết hợp với $m^2+2m-8<0$ suy ra $-4< m< 1$
Vậy........