chứng minh 19.8n + 17 là hợp số ( n thuộc N* , n > 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
Đối với bài này, đầu tiên lấy n = 1, 2 để biết gợi ý phân tích số thành nhân tử, rồi sau đó khái quát lên.
Với n = 1, số trở thành 121 = 11 x 11
Với n = 2, số trở thành 11211 = 111 x 101
Vậy khái quát hóa lên:
11...1211...1 = 11..11 x 100...01 (số thứ nhất có n+1 chữ số 1, só thứ hai có số đầu tiên và cuối cùng là 1 và n-1 chữ số 0 ở giữa.
Để chứng minh trường hợp tổng quát trên cũng rất dễ, có thể đặt phép nhân theo hàng dọc là ra:
11...11
x 10...01
11.. 1
11..1
11...21....1
Hoặc cách khác là:
11...11 x 10...01 = 11...11 x (10n +1) = 11...11 x 10n + 11...11
= 11...1100...0 + 11...11 = 11...1211...1
Bản chất hai cách nhân như nhau cả.
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Giải:
Nếu \(n=2k\)\((k\) \(\in N\)*\()\) thì:
\(19.8^{2k}+17=18.8^{2k}+\left(1+63\right)^k+\left(18-1\right)\)\(\equiv0\) (\(mod\) \(3\))
Nếu \(n=4k+1\) thì:
\(19.8^{4k+1}+17=13.8^{4k+1}+6.8.64^{2k}+17\)
\(=13.8^{4k+1}+39.64^{2k}+9\left(1-65\right)^{2k}+\left(13+4\right)\equiv0\) (\(mod\) \(13\) )
Nếu \(n=4k+3\) thì:
\(19.8^{4k+3}+17=15.8^{4k+3}+4.8^3.64^{2k}+17\)
\(=15.8^{4k+3}+4.510.64^{2k}+4.2\left(1-65\right)^{2k}+\left(25-8\right)\equiv0\) (\(mod\) \(5\))
Vậy \(\forall n\in N\)* \(,n>1\) thì \(19.8^n+17\) là hợp số (Đpcm)
à , nếu n = 4k + 2 thì s bn ?