K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Giải:

Nếu \(n=2k\)\((k\) \(\in N\)*\()\) thì:

\(19.8^{2k}+17=18.8^{2k}+\left(1+63\right)^k+\left(18-1\right)\)\(\equiv0\) (\(mod\) \(3\))

Nếu \(n=4k+1\) thì:

\(19.8^{4k+1}+17=13.8^{4k+1}+6.8.64^{2k}+17\)

\(=13.8^{4k+1}+39.64^{2k}+9\left(1-65\right)^{2k}+\left(13+4\right)\equiv0\) (\(mod\) \(13\) )

Nếu \(n=4k+3\) thì:

\(19.8^{4k+3}+17=15.8^{4k+3}+4.8^3.64^{2k}+17\)

\(=15.8^{4k+3}+4.510.64^{2k}+4.2\left(1-65\right)^{2k}+\left(25-8\right)\equiv0\) (\(mod\) \(5\))

Vậy \(\forall n\in N\)* \(,n>1\) thì \(19.8^n+17\) là hợp số (Đpcm)

24 tháng 3 2017

à , nếu n = 4k + 2 thì s bn ?

6 tháng 4 2016

Xét tính chẵn lẻ nhé.

25 tháng 4 2020

Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1

Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d

=> (2n+3) - (n+1) \(⋮\)d

=> (2n+3) -2(n+1) \(⋮\)d

=> 2n+3 -2n -2 \(⋮\)d

=> 1 \(⋮\)d

=> n+1/2n+3 là phân số tối giản

Vậy...

25 tháng 4 2020

Gọi d là ƯC(n+1 ; 2n + 3)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(n +1 ; 2n + 3) = 1

=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )

13 tháng 9 2014

Đối với bài này, đầu tiên lấy n = 1, 2 để biết gợi ý phân tích số thành nhân tử, rồi sau đó khái quát lên.

Với n = 1, số trở thành 121 = 11 x 11

Với n = 2, số trở thành 11211 = 111 x 101

Vậy khái quát hóa lên:

       11...1211...1 = 11..11 x 100...01 (số thứ nhất có n+1 chữ số 1, só thứ hai có số đầu tiên và cuối cùng là 1 và n-1 chữ số 0 ở giữa.

Để chứng minh trường hợp tổng quát trên cũng rất dễ, có thể đặt phép nhân theo hàng dọc là ra:

      11...11

   x 10...01

      11..   1

11..1

11...21....1

Hoặc cách khác là:

   11...11 x 10...01 = 11...11 x (10n +1) = 11...11 x 10n + 11...11

= 11...1100...0 + 11...11 = 11...1211...1

Bản chất hai cách nhân như nhau cả. 

4 tháng 11 2017

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz