K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

đề khó quả nhỉ mà bn ra đề ở đây ko ai trả lời cho đâu mk thử nghĩ xem

29 tháng 3 2017

bài này lớp 7 hả

8 tháng 4 2017

A = \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)

= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{10.11}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

= \(1-\dfrac{1}{11}\)

= \(\dfrac{10}{11}\)

Vậy A = \(\dfrac{10}{11}\)

8 tháng 4 2017

a) \(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{110}\)

\(\Leftrightarrow A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{10.11}\)

\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

\(\Leftrightarrow A=1-\dfrac{1}{11}=\dfrac{10}{11}\)

2 tháng 5 2022

undefined

3 tháng 12 2017

☘ Áp dụng bất đẳng thức AM - GM

\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}=1\)

\(\Leftrightarrow1-\dfrac{a}{1+a}=\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\)

\(\Rightarrow\dfrac{1}{1+a}\ge3\sqrt[3]{\dfrac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

☘ Tương tự, ta cũng có:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+d}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+c\right)\left(1+b\right)}}\)

☘ Nhân vế theo vế

\(\Rightarrow\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\dfrac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)

\(\Rightarrow abcd\le\dfrac{1}{81}\)

☘ Dấu "=" xảy ra khi \(a=c=b=d=\dfrac{1}{3}\)

Nguồn: https://hoc24.vn/hoi-dap/question/463672.html

NV
28 tháng 2 2021

\(\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{a}{b}}\right)^2}+\dfrac{1}{\left(1+\sqrt{ab}\sqrt{\dfrac{b}{a}}\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)

Tương tự: \(\dfrac{1}{\left(1+c\right)^2}+\dfrac{1}{\left(1+d\right)^2}\ge\dfrac{1}{1+cd}\)

\(\Rightarrow B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{1}{1+ab}+\dfrac{1}{1+\dfrac{1}{ab}}=\dfrac{1}{1+ab}+\dfrac{ab}{1+ab}=1\)

\(B_{min}=1\) khi \(a=b=c=d=1\)

28 tháng 2 2021

Áp dụng BĐT phụ ta có:

\(B\ge\dfrac{1}{1+ab}+\dfrac{1}{1+cd}=\dfrac{ab+cd+2}{1+ab+cd+abcd}=1\)

Vậy GTNN của B bằng 1 <=> a=b=c=d=1

NV
25 tháng 8 2021

Hằng đẳng thức:

\(\left(x-y-z\right)^2=x^2+y^2+z^2+2\left(yz-xy-zx\right)=x^2+y^2+z^2-2\left(xy+xz-yz\right)\)

\(\Rightarrow x^2+y^2+z^2=\left(x-y-z\right)^2+2\left(xy+xz-yz\right)\)

Giờ thay \(x=\dfrac{1}{a}\) ; \(y=\dfrac{1}{b}\)\(z=\dfrac{1}{c}\) là ra cái người ta làm

25 tháng 8 2021

Anh ơi! đoạn cuối do a,b,c là các số hữu tỉ khác 0 nên \(\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) là các số hữu tỉ. Vậy phá trị tuyệt đói ra thì nó có phải là số hữu tỉ nữa không ạ anh. anh giải thích giúp em nhá! 

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$