1)tìm tất cả các cặp số nguyên (n;z) thỏa mãn
2n+122=z2-32
bài 2
a)CMR nếu 2a+3b\(⋮\)17 khi và chỉ khỉ 9a+5b\(⋮17\)(a;b\(\in\)Z)
b)tìm hai số dương x;y biết rằng tổng hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210;12
Bài 1:Giải:
Nếu \(n\) lẻ thì \(2n\equiv-1\) (\(mod\) \(3\))
Từ \(PT\Rightarrow z^2\equiv-1\) ( \(mod\) \(3\)) (loại)
Nếu \(n\) chẵn thì \(n=2m\left(m\in N\right)\)
\(PT\) trở thành:
\(z^2-2^{2m}=153\) Hay \(\left(z-2m\right)\left(z+2m\right)=153\)
\(\Rightarrow z+2m\) và \(z-2m\inƯ\left(153\right)\)
\(\Leftrightarrow\) Ta tìm được: \(\left\{{}\begin{matrix}m=2\\z=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n=4\\z=13\end{matrix}\right.\)
Vậy \(\left(n;z\right)=\left(4;13\right)\)
Bài 2:
b) Theo đề bài ta có:
\(35\left(x+y\right)=210\left(x-y\right)=12x.y\)
Chia các tích trên cho \(BCNN\left(35;210;12\right)=420\) ta được:
\(\dfrac{35\left(x+y\right)}{420}=\dfrac{210\left(x-y\right)}{420}=\dfrac{12xy}{420}\)
Hay \(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{xy}{35}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{\left(x+y\right)+\left(x-y\right)}{12+2}=\dfrac{\left(x+y\right)-\left(x-y\right)}{12-2}\)
\(\Leftrightarrow\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{x}{7}=\dfrac{y}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Leftrightarrow\dfrac{xy}{35}=\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{xy}{7y}=\dfrac{xy}{5x}\)
Mà \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\5x=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)
Vậy hai số nguyên dương \(x;y\) là \(7;5\)
bạn giải thích thêm cái đoaạn từ 1 và 2 suy ra đk k