K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Gọi ƯCLN(12n + 1,30n + 2) là d 

Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d

           30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d

=> 60n + 5 - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d => d = 1

=> ƯCLN(12n + 1,30n + 2) = 1

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản  

Gọi d=ƯCLN(n+1;n+2)

=>n+1-n-2 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

20 tháng 4 2023

thx bn nha

 

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

19 tháng 3 2023

1Đặt UCLN(\(2n^2\) + n + 1;n) = d

=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d

=> (2n + 1) n ⋮ d

<=>\(2n^2\)  + n ⋮ d

<=>(2n+ n + 1) - (2n2 + n) ⋮ d

<=> 1⋮d

=> d ϵƯ(1)=1

=>UCLN(\(2n^2\) + n + 1;n) =1

=>dpcm

 

19 tháng 3 2023

hum biết nhe

khó qué

tui mới L4 

HIHI