K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

Vì a, b không chia hết cho 3 nên a, b có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\inℤ\right)\)

* Nếu \(a=3k+1\)\(\Rightarrow\)\(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1 

\(b=3k+1\)\(\Rightarrow\)\(b^2=\left(3k+1\right)^2=9k^2+1\) chia 3 dư 1 

* Nếu \(a=3k+2\)\(\Rightarrow\)\(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(b=3k+2\)\(\Rightarrow\)\(b^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(\Rightarrow\)\(a^2,b^2\) chia 3 dư 1 

\(\Rightarrow\)\(a^2-b^2⋮3\)

Lại có : 

\(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left[\left(a^4-2a^2b^2+b^4\right)+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Xét \(\left(a^2-b^2\right)⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2+3a^2b^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮9\)

Hay \(a^6-b^6⋮9\) ( đpcm ) 

Chúc bạn học tốt ~ 

28 tháng 10 2023

a) Ta có:

\( A = 5+5^2+5^3+\ldots+5^{100} \)

Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).

Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).

Do đó, A chia hết cho 5.

Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).

Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).

Do đó, A không chia hết cho 25.

b) Ta có:

\( B = 5+5^2+5^3+\ldots+5^{20} \)

Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).

Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).

Do đó, B chia hết cho 6.

c) Ta có:

\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)

Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).

Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).

Do đó, C không chia hết cho 6.

d) Ta có:

\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)

Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).

Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục

mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))

28 tháng 10 2023

bạn Tiến Dũng Trương lm sai r

27 tháng 7 2018

Vì a không chia hết cho 3 => a có dạng 3k+1 hoặc 3k+2 (k thuộc Z)

- Nếu \(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1

- Nếu \(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+1\) chia 3 dư 1

=> nếu a không chia hết cho thì a2 chia 3 dư 1 (1)

CM tương tự ta có nếu b không chia hết cho 3 thì b2 chia 3 dư 1 (2)

Từ (1) và (2) => \(a^2-b^2⋮3\) (3)

Lại có: \(a^6-b^6=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left(a^4-2a^2b^2+b^4+3a^2b^2\right)=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Từ (3) => \(\left(a^2-b^2\right)^2⋮3\)

Mà \(3a^2b^2⋮3\)

\(\Rightarrow\left(a^2-b^2\right)^2+3a^2b^2⋮3\) (4)

Từ (3) và (4) => \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮3.3=9\) hay \(a^6-b^6⋮9\) (đpcm)

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3