K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

2007 ; 2003 lẻ => 20072005 và 20032003 lẻ => Hiệu 20072005 - 20032003 chẵn =>  20072005 - 20032003 chia hết cho 2

=>  (20072005 - 20032003)/2 là số nguyên Hay  0,5. (20072005 - 20032003) là số nguyên

25 tháng 3 2015

đề hình như thiếu có bao nhiêu số 2003

15 tháng 1 2017

bạn ơi muốn thế thì phải có 1991 số 2003 nha

23 tháng 12 2015

H = 0,5 (20072005 - 20032003)

H = (20072005 - 20032003) / 2

20072005 tận cùng là số lẻ

20032003 tận cùng cũng là số lẻ

lẻ trừ lẻ bằng chẵn

Số chẵn sẽ chua hết cho 2

Suy ra H chua hết cho 2

Và H là số nguyên

19 tháng 8 2015

Nguyễn Ngọc Quý 'nguyên'<>'tự nhiên'

17 tháng 2 2020

SỐ NGUYÊN

14 tháng 10 2016

giúp mk vs cần gấp lắm

3 tháng 7 2015

Xét dãy số sau:

2003; 20032003;....; 20032003...2003 (Có n số 2003; n > 2004 )

Nhận xét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004 

=> Số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;..; 2003

Dãy trên có nhiều hơn 2003 số nên theo Nguyên lý Dirichlê => có ít nhất 2 số chia cho 2004  có cùng số dư

=> số có dạng 20032003...2003...2003 (có 2003 + m số 2003 ) và số 2003..2003 (có m số 2003 ) có cùng số dư

=> Hiệu của chúng chia hết cho 2004  

Hay số 20032003...200300..00 (có 2003 số 2003 ) chia hết cho 2004

3 tháng 7 2015

Xét dãy số gồm 2005 số hạng: 
2003, 20032003, ...2003.....(2003 con số 2003).. 2003, 
- xét phép chia từng số hạng của dãy trên cho số 2004 (2005 phép chia được thực hiện), khi đó chỉ có thể xảy ra 2004 số dư 1, 2, 3.....2004 ( không có dư 0 vì 2003..2003 không thể chia hết cho 2004 lí do 2004 là số chẳn chia hết cho 2, trong khi số có dạng 2003...2003 lẻ, không thể chia hết cho 2 => tất nhiên k thể chia hết cho 2004). 
- từ suy luận trên ta thấy có ít nhất hai phép chia trong 2005 phép chia có cùng số dư, 
giả sử hai số hạng thỏa đk trên là A và B (A<B) 
hay gọi dạng cụ thể là: A=2003...2003 (n số 2003), B=2003..2003 (m số 2003), m>n 
khi đó xét số D=B-A=2003...2003..000 (có n số 2003 và m-n số 0 ) , rõ ràng là D chia hết cho 2004 

Kết luận : tồn tại số theo đề bài cần chứng minh

31 tháng 8 2021

Ta có: \(x^2-2\in Z,-2\in Z\)

\(\Rightarrow x^2\in Z\Rightarrow x\in Z\)

Vì \(x^2-2\) là số nguyên

mà 2 là số nguyên

nên \(x^2\) là số nguyên

hay x là số nguyên

23 tháng 10 2016

Giả sử A là 1 số nguyên tố , A = 30 k + r với k,rεN và 0≤r<30.

Nếu r chia hết cho 2, 3 hoặc 5 thì A cũng chia hết cho 2, 3 (hoặc 5) nên A = 2, 3 hoặc 5 ( thỏa mãn)

Nếu r không chia hết cho 2, 3 và 5 :

Giả sử r là hợp số thì r=r1.r2 với r1,r2 > 1.

Vì r không chia hết cho 2, 3 và 5 nên r1,r2 cũng không chia hết cho 2, 3 và 5

=> r1,r2 ≥ 7 => r = r1.r2 ≥ 7.7 = 49 ( vô lý ).

Vậy r không phải là hợp số nên r = 1 hoặc r là số nguyên tố. 

5 tháng 4 2016

Trong 31 số nguyên này phải có ít nhất 1 số dương. Vì nếu cả 31 số đều là âm thì tổng của 5 số bất kì là âm

Bỏ 1 số dương này ra ngoài, còn 30 số

Chia 30 số này thành 6 nhóm, mỗi nhóm 5 số

Theo như đề bài, tổng 5 số bất kì là số dương

=> Cả 6 nhóm đều dương

=> Tổng 30 số là dương

=> Tổng 31 số là dương ( cộng với 1 số dương vừa để ở ngoài)