OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tập huấn miễn phí ra đề kiểm tra và chấm phiếu trắc nghiệm dành cho giáo viên khối THCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng: Nếu x, y,z là các số nguyên và x+y+z chia hết cho 6
thì giá trị của đa thức A=(x-y)(x+y)(x+y+z) -3xyz chia hết cho 6
\(\left(x+y+z\right)⋮6\Rightarrow\left(x+y+z\right)⋮2\)
x, y, z không thể đồng thời cả 3 số cùng lẻ ; nghĩa là phải có 1 số chẵn
\(\left\{{}\begin{matrix}\left(x.y.z\right)⋮2\Rightarrow3\left(xyz\right)⋮6\\\left(\left(x-y\right)\left(x+y\right)\left(x+y+z\right)\right)⋮6\end{matrix}\right.\)
\(\Rightarrow A⋮6\Rightarrow dpcm\)
Cho đa thức A=(x+y)(y+z)(z+x) + xyz
a) Phân tích A thành nhân tử
b) Chứng minh nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A - 3xyz chia hết cho 6
Cho A = ( x+y )(y+z)(z+x) + xyz
Chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A - 3xyz chia hết cho 6
cho đa thức A=x3+x2y-xy2-y3+x2z-y2z
1. phân tích đa thức thành nhân tử
2. chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì giá trị đa thức B=A-3xyz cũng chia hết cho 6
Cho đa thức :
A= (x + y) (y + z) (z + x) + xyz
b) Chứng minh rằng nếu x, y ,z là các số nguyên và x + y+z chia hết cho 6 thì A- 3xyz chia hết cho 6
Tham khảo:
1, Cho x,y ,z là các số dương đôi một khác nhau: : Cm :
A = x3 + y3 + z3 - 3xyz là số dương
2, Cho B= a4 + b4 + c4 - 2a2b2 - 2a2c2 - 2b2c2a, Phân tích đa thức trên thành nhân tử
b, CM : Nếu a,b,c là số đô 3 cạnh của 1 tam giác thì B<0 .3, Cho C = (x+y)(y+z)(z+x) +xyz a; Phân tích đa thức thành nhân tử b;CMR : Nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì giá trị của đa thức C - xyz cũng chia hết cho 6
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 10. Viết số 100 thành tổng các số nguyên tố khác nhau 11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 16. a) CM x² + y² = 7z² b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
a, Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6 . Chứng minh rằng giá trị của các biểu thức
M = (x+y)(y+z)(z+x) -2xyz cũng chia hết cho 6
b, Cho hai số thực x,y dương thỏa mãn:x+y >= 4
Tìm GTNN của biểu thức S=\(\frac{9x}{2}\)+2y +\(\frac{12}{x}\)+\(\frac{2}{y}\)
Cho x,y,z là các số nguyên thoả mãn x+y+z chia hết 6
Chứng minh: (x+y)(y+z)(x+z)-2xyz chia hêt 6
\(\left(x+y+z\right)⋮6\Rightarrow\left(x+y+z\right)⋮2\)
x, y, z không thể đồng thời cả 3 số cùng lẻ ; nghĩa là phải có 1 số chẵn
\(\left\{{}\begin{matrix}\left(x.y.z\right)⋮2\Rightarrow3\left(xyz\right)⋮6\\\left(\left(x-y\right)\left(x+y\right)\left(x+y+z\right)\right)⋮6\end{matrix}\right.\)
\(\Rightarrow A⋮6\Rightarrow dpcm\)