tinh \(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\) giup mik fai nop gap
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{2}+\sqrt{\frac{3}{2}}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}=0,7886751346+\frac{\sqrt{2}-\sqrt{\frac{3}{2}}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=0,1556181798=1\)
Ta có: \(4\left(1+\frac{\sqrt{3}}{2}\right)=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\Rightarrow1+\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}+1}{2}\right)^2\)
Tương tự \(1-\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}-1}{2}\right)^2\)
\(VT=\frac{\left(\frac{\sqrt{3}+1}{2}\right)^2}{1+\frac{\sqrt{3}+1}{2}}+\frac{\left(\frac{\sqrt{3}-1}{2}\right)^2}{1-\frac{\sqrt{3}-1}{2}}=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{3+\sqrt{3}}{2}}+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{3-\sqrt{3}}{2}}\)\(=\frac{\left(\sqrt{3}+1\right)^2}{2.\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{2.\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{2\sqrt{3}}+\frac{\sqrt{3}-1}{2\sqrt{3}}=\frac{\sqrt{3}+1+\sqrt{3}-1}{2\sqrt{3}}=1=VP\)
a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)
b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)
c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)
d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)
e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)
f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
sau khi trục căn thức ta có:
\(\left(-\sqrt{2}-\sqrt{3}\right).\frac{\left(3\sqrt{2}-2\sqrt{3}\right)}{\sqrt{6}}=\frac{-\sqrt{6}}{\sqrt{6}}\)
vậy KQ là -1 nha
\(=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}}\)
\(=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\) ?????