K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2020

a, Đặt x^2 + x = t

\(t^2+4t-12=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

b, Đặt x + 1 = t 

\(t\left(t+1\right)\left(t+2\right)\left(t+3\right)-24=\left(t^2+t\right)\left(t^2+3t+2t+6\right)\)

\(\left(t^2+t\right)\left(t^2+5t+6\right)-24=t^4+5t^3+6t^2+t^3+5t^2+6t-24\)

\(=t^4+6t^3+11t^2+6t-24=\left(t^3+7t^2+18t+24\right)\left(t-1\right)\)

\(=\left(t-1\right)\left(t+4\right)\left(t^2+3t+6\right)=x\left(x+5\right)\left[\left(x+5\right)^2+3\left(x+5\right)+6\right]\)

19 tháng 11 2024

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

NV
3 tháng 1 2024

a.

\(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b.

\(x^3-9x^2+6x+16=\left(x^3-7x^2-8x\right)-\left(2x^2-14x-16\right)\)

\(=x\left(x^2-7x-8\right)-2\left(x^2-7x-8\right)\)

\(=\left(x-2\right)\left(x^2-7x-8\right)=\left(x-2\right)\left(x^2+x-8x-8\right)\)

\(=\left(x-2\right)\left[x\left(x+1\right)-8\left(x+1\right)\right]=\left(x-2\right)\left(x+1\right)\left(x-8\right)\)

c.

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)

\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)^2-4\left(x^2+7x+10\right)+6\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10-4\right)+6\left(x^2+7x+10-4\right)\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

11 tháng 8 2021

a/ \(\left(x+y\right)^2-8\left(x+y\right)+12\)

\(=\left(x+y\right)\left(x+y-8+12\right)\)

\(=\left(x+y\right)\left(x+y+4\right)\)

==========

b/\(\left(x^2+2x\right)^2-2x^2-4x-3\)

\(=\left(x^2+2x\right)^2-\left(2x^2+4x\right)-3\)

\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3\)

\(=\left(x^2+2x\right)\left(x^2+2x-5\right)\)

===========

c/ \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2-15\right)\)

\(=\left(x^2+x\right)\left(x^2+x-17\right)\)

[---]

13 tháng 1 2024

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

13 tháng 1 2024

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bài 1:

a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$

$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$

b.

$(x+1)(x+2)(x+3)(x+4)-24$

$=[(x+1)(x+4)][(x+2)(x+3)]-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

$=a(a+2)-24$ (đặt $x^2+5x+4=a$)

$=a^2+2a-24=(a^2-4a)+(6a-24)$

$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$

$=x(x+5)(x^2+5x+10)$

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bài 2:

a. ĐKXĐ: $x\neq 3; 4$

\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)

b. $x^2+20=9x$

$\Leftrightarrow x^2-9x+20=0$

$\Leftrightarrow (x-4)(x-5)=0$

$\Rightarrow x=5$ (do $x\neq 4$)

Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$

21 tháng 12 2021

\(a,x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\left(x+1\right)\\ b,x^2-2x-15=\left(x^2-5x\right)+\left(3x-15\right)=x\left(x-5\right)+3\left(x-5\right)=\left(x+3\right)\left(x-5\right)\\ c,x^2-4+\left(x-2\right)^2=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\)

\(d,x^3-2x^2+x-xy^2=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\)

15 tháng 9 2021

\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)

a: (3x-5)^2-(x+3)^2

=(3x-5-x-3)(3x-5+x+3)

=(2x-8)(4x-2)

=2(x-4)*2*(2x-1)

=4(x-4)(2x-1)

b: (2x+1)^2-4(x-3)^2

=(2x+1)^2-[2*(x-3)]^2

=(2x+1)^2-(2x-6)^2

=(2x+1-2x+6)(2x+1+2x-6)

=(4x-5)*7

b: =x^3+2x^2-x^2+4

=x^2(x+2)-(x+2)(x-2)

=(x+2)(x^2-x+2)

c: =x^3-2x^2+x^2-4

=x^2(x-2)+(x-2)(x+2)

=(x-2)(x^2+x+2)

d: =(x-y)(x+y)-7(x+y)

=(x+y)(x-y-7)

14 tháng 9 2023

a) \(x-4\sqrt{x-2}+2\left(x\ge2\right)\) 

\(=x-4\sqrt{x-2}-2+4\)

\(=\left(x-2\right)-4\sqrt{x-2}+4\)

\(=\left(\sqrt{x-2}\right)^2-2\cdot2\cdot\sqrt{x-2}+2^2\)

\(=\left(\sqrt{x-2}-2\right)^2\)

b) \(x+4\sqrt{x-2}+2\left(x\ge2\right)\)

\(=x+4\sqrt{x-2}+4-2\)

\(=\left(x-2\right)+4\sqrt{x-2}+4\)

\(=\left(\sqrt{x-2}\right)^2+2\cdot2\cdot\sqrt{x-2}+2^2\)

\(=\left(\sqrt{x-2}+2\right)^2\)