CMR:
1/11+1/12+1/13+...+1/69+1/70>1+5/28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1+5/28=33/28
Đặt A=1/11+1/12+1/13+...+1/69+1/70
A=(1/11+1/12++1/13+...+1/20)+(1/21+1/22+1/23+...+1/30)+(1/31+1/32+1/33+...1/60)+...+1/70
Ta thấy :
1/11+1/12+1/13+...+1/20>1/20+1/20+1/20+...+1/20(có 10 số hạng 1/20)=1/20*10=1/2
1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(10 số hạng 1/30)=1/30*10=1/3
1/30+1/31+1/32+...+1/60>1/60+1/60+...+1/60(30 số hạng 1/60)=1/60*30=1/2
1/61+1/62+1/63+...+1/70>1/70+1/70+1/70+...+1/70(10 số hạng 1/70)=1/70*10=1/7
=>1/11+1/12+1/13+...+1/69+1/70>1/2+1/3+1/2+1/7
=>A>31/21
Mà 31/21>33/28
=>A>33/28
=>A>1+5/28(DPCM)
Vậy A>1+5/28
Gọi \(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{69}+\dfrac{1}{70}\) là \(S\)
Ta nhận thấy:
\(\dfrac{1}{11},\dfrac{1}{12},\dfrac{1}{13},...,\dfrac{1}{19}\)đều lớn hơn \(\dfrac{1}{20}\)
\(\dfrac{1}{61},\dfrac{1}{62},\dfrac{1}{63},...,\dfrac{1}{69}\)đều lớn hơn \(\dfrac{1}{70}\)