K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABK vuông tại K và ΔACG vuông tại G có

góc A chung

Do đó: ΔABK\(\sim\)ΔACG

b: Ta có: ΔABK\(\sim\)ΔACG

nên AB/AC=AK/AG

hay \(AB\cdot AG=AK\cdot AC\)

Xét ΔABC và ΔAKG có

AB/AK=AC/AG

góc BAC chung

Do đó: ΔABC\(\sim\)ΔAKG

a: Xét ΔABK vuông tại K và ΔACG vuông tại G có

góc BAK chung

Do đó: ΔABK\(\sim\)ΔACG

b: ta có: ΔABK\(\sim\)ΔACG

nên AB/AC=AK/AG

hay \(AB\cdot AG=AK\cdot AC\)

Xét ΔABC và ΔAKG có 

AB/AK=AC/AG

góc BAC chung

Do đó: ΔABC\(\sim\)ΔAKG

4 tháng 3 2021

Ui cho mình xin lỗi nãy mình bấm nhầm nhé )))):

Xét ∆ABK và ∆ACG:

A: góc chung

\(\widehat{AKB}=\widehat{AGC}=90^o\)

=> ∆ABK\(\sim\)∆ACG(g.g)

b) Vì ∆ABK\(\sim\)∆ACG (theo câu a)

=> \(\dfrac{AB}{AK}=\dfrac{AC}{AG}\Leftrightarrow AB.AG=AC.AK\)

Vì \(\dfrac{AB}{AK}=\dfrac{AC}{AG}\left(cmt\right)\)

=>\(\dfrac{AB}{AC}=\dfrac{AK}{AG}\)

Xét ∆ABC và ∆AKG:

A: góc chung

\(\dfrac{AB}{AC}=\dfrac{AK}{AG}\left(cmt\right)\)

=> ∆ABC~∆AKG(c.g.c)

b) Vì H là giao điểm của 2 đường cao BK và CG

=> H là trực tâm ∆ABC

=> AH vuông góc với BC

Gọi giao điểm AH và BC là I.

Xét ∆BHI và ∆BCK:

B: góc chung

\(\widehat{BIH}=\widehat{BKC}=90^o\)

=> ∆BHI~∆BCK(g.g)

=> \(\dfrac{BH}{BI}=\dfrac{BC}{BK}\)

=> BH.BK=BC.BI(1)

Xét ∆CHI và ∆CBG:

C: góc chung

\(\widehat{CIH}=\widehat{CGB}=90^o\) 

=> ∆CHI~∆CBG(g.g)

=> \(\dfrac{CH}{CI}=\dfrac{BC}{CG}\)

=> CH.CG=BC.CI(2)

Từ (1) và (2)

 suy ra BH.BK+CH.CG=BI.BC+CI.BC=BC(CI+BI)=BC.BC=BC2

4 tháng 3 2021

Dễ nhưng lười đánh máy:v

a) Xét ∆ABK và ∆ACG:

A: góc chung

\(\widehat{AKB}=\widehat{AGC}=90^o\)

 

a) Xét ΔABK vuông tại K và ΔACI vuông tại I có 

\(\widehat{BAK}\) chung

Do đó: ΔABK∼ΔACI(g-g)

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AI\cdot AB=AK\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)

nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)

Xét ΔAIK và ΔACB có 

\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)

\(\widehat{IAK}\) chung

Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có

góc KBH chung

=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC

=>BK*BC=BD*BH

16 tháng 3 2023

Bạn cho mình xin cả hình đc ko

a: Xet ΔAEB và ΔAFC có

góc AEB=góc AFC

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

b: Xét ΔAEF và ΔABC co

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

19 tháng 4

còn câu C nữa nè 

bạn xem bạn có giải được ko

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AB*AF=AE*AC: AB/AE=AC/AF

b: Xet ΔABC và ΔAEF có

AB/AE=AC/AF
góc BAC chung

=>ΔABC đồng dạng với ΔAEF

góc BFC=góc BDA=90 độ

mà góc B chung

nên ΔBFC đồng dạng với ΔBDA

=>BF/BD=BC/BA

=>BF/BC=BD/BA

=>ΔBFD đồng dạng với ΔBCA

 

28 tháng 3 2023

Giúp mình với ạ

a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có

góc C chung

=>ΔCHA đồng dạng với ΔCKB

b: Xét ΔCAB có

AH,BK là đừog cao

AH cắt BK tại D

=>D là trực tâm

=>CD vuông góc AB tại E

góc CHA=góc CEA=90 độ

=>CHEA nội tiếp

=>góc BHE=góc BAC

mà góc HBE chung

nên ΔBEH đồng dạng với ΔBAC

c: góc KHD=góc ACE

góc EHA=góc KBA

mà góc ACE=góc KBA

nên góc KHD=góc EHD

=>HA là phân giác của góc EHK

a: Xét tứ giác BHCD có

BH//CD
BD//CH

=>BHCD là hình bình hành

b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có

góc KAB chung

=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC

=>AK*AC=AB*AI; AK/AB=AI/AC

c: Xét ΔAKI và ΔABC có

AK/AB=AI/AC

góc KAI chung

=>ΔAKI đồng dạng với ΔABC