với 0<a,b,c <1/2 . thỏa mãn : a+b+c=1
tìm min của : \(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Vì x > 0 nên |x| = x; y2 > 0 với mọi y ≠ 0)
(Vì x2 ≥ 0 với mọi x; và vì y < 0 nên |2y| = – 2y)
(Vì x < 0 nên |5x| = – 5x; y > 0 nên |y3| = y3)
(Vì x2y4 = (xy2)2 > 0 với mọi x ≠ 0, y ≠ 0)
x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x
b: Vì (d')//(d) nên a=2
Vậy: (d'): y=2x+b
Thay x=2 và y=3 vào (d'), ta được:
b+4=3
hay b=-1
a) Ta có:
\(x^2+2xy+y^2+1\)
\(=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x+y\right)^2+1\ge1\)
\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x
b) Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
\(=6\sqrt{\dfrac{xy}{2y^2}}=6\cdot\dfrac{\sqrt{xy}}{y\sqrt{2}}=3\sqrt{2}\cdot\dfrac{\sqrt{xy}}{y}\)
\(=\dfrac{3\sqrt{2xy}}{y}\)
\(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)
\(P=\dfrac{1}{a\left[2b+2c-\left(a+b+c\right)\right]}+\dfrac{1}{b\left[2c+2a-\left(a+b+c\right)\right]}+\dfrac{1}{c\left[2a+2b-\left(a+b+c\right)\right]}\)
\(P=\dfrac{1}{a\left(b+c-a\right)}+\dfrac{1}{b\left(c+a-b\right)}+\dfrac{1}{c\left(a+b-c\right)}\)
\(P=\dfrac{1}{ab+ac-a^2}+\dfrac{1}{bc+ab-b^2}+\dfrac{1}{ca+bc-c^2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{-a^2-b^2-c^2+2ab+2bc+2ca}=\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow a^2+b^2+c^2-2\left(ab+bc+ca\right)\ge-\left(ab+bc+ca\right)\)
\(\Rightarrow-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]\le ab+bc+ca\)
\(\Rightarrow\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\ge\dfrac{9}{ab+bc+ca}\)
Từ ( 1 )
\(\Rightarrow P\ge\dfrac{9}{ab+bc+ca}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow1\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{1}{3}\ge ab+bc+ca\)
\(\Rightarrow27\le\dfrac{9}{ab+bc+ca}\)
\(\Rightarrow P\ge27\)
Vậy \(P_{min}=27\)