K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Đặt t = x2 +x +1 => x2 +x +2 = t +1

=> t2 +t -12 = 0

<=> t = 3; t=-4

= x = 1; x = -2,

15 tháng 3 2017

Đặt y = x\(^2\)+x+1

Phương trình đã cho tương đương với :

y(y+1)-12=0

\(\Leftrightarrow\) y\(^2\)+y-12=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}y=-4\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x^2+x+1=-4\\x^2+x+1=3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x^2+x+5x=0\left(1\right)\\x^2+x-2=0\end{matrix}\right.\) (1)Vô nghiệm.

\(\Leftrightarrow\) x\(^2\) +x-2 =0 \(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy phương trình có 2 nghiệm là 1 và -2 .

17 tháng 11 2019

1, 

|x| = 20

=> x = + 20

37 - |x| = 12

=> |x| = 25

=> x = + 25

|x| - 12 = 8

=> |x| = 20

=> x = + 20

|x| + 8 = |-20| - 12

=> |x| + 8 = 20 - 12

=> |x| + 8 = 8

=> |x| = 0

=> x = 0

24 tháng 5 2016

cách 1:Viết thành hằng đẳng thức

\(\Leftrightarrow x^2+x+\frac{1}{4}=x+2010-\sqrt{x+2010}+\frac{1}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+2010}-\frac{1}{2}\right)^2\)

tới đây dễ rùi nhé

cách 2:\(ĐKXĐ:x\ge-2010\)

đặt \(\sqrt{x+2010}=t\left(t>0\right)\)

\(\Rightarrow x^2+t=t^2-x\)

\(\Rightarrow x^2-t^2+x+t=0\)

\(\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)

tự làm tiếp

cách 3:\(\Leftrightarrow\sqrt{x+2010}+x^2=2010\)

\(\Leftrightarrow\sqrt{x+2010}+x^2-2010=0\)

\(\Leftrightarrow x-\sqrt{2010-\sqrt{x+2010}}=0\)

\(\Leftrightarrow\sqrt{2010-\sqrt{x+2010}}+x=0\)

Đến đây tách căn ra ta đc 2 TH (1) và (2)

\(\Leftrightarrow2x+\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(1\right)\)

\(\Leftrightarrow2x+3\sqrt{19}\sqrt{47}+1=0\)

Tự làm tiếp

\(\Leftrightarrow2x-\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(2\right)\)

\(\Leftrightarrow2x-3\sqrt{19}\sqrt{47}+1=0\)

Tự làm tiếp nhé

NV
2 tháng 12 2021

\(\Delta'=16-\left(3m+1\right)\ge0\Rightarrow m\le5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-8\\x_1x_2=3m+1\end{matrix}\right.\)

Kết hợp điều kiện đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=-8\\5x_1-x_2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-8\\6x_1=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-7\end{matrix}\right.\)

Thế vào \(x_1x_2=3m+1\)

\(\Rightarrow\left(-1\right).\left(-7\right)=3m+1\)

\(\Rightarrow m=2\) (thỏa mãn)

6 tháng 8 2020

\(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^2+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x-4\right)\left(x+4\right)+3x^2\)\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)+3\left(x^2-4x+4\right)=x^2+2x+1-\left(x^2-4^2\right)+3x^2\)\(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+12=x^2+2x+1-x^2+16+3x^2\)

\(\Leftrightarrow-20x=39\)

\(\Leftrightarrow x=\frac{-39}{20}\)

Vậy \(x=\frac{-39}{20}\)

17 tháng 6 2016

b)

\(\left(2x-1\right)^2=25\)

\(\left(2x-1\right)^2=5^2=\left(-5\right)^2\)

TH1: 2x - 1 = 5

=> x = 3

TH2: 2x - 1 = -5

=> x = -2

17 tháng 6 2016

bạn giải hô mk câu a và câu c đc ko đc thì cảm ơn bạn nhiều nhé

17 tháng 7 2018

a)(x − 12)2 = 0

=>x − 12 = 0

=> x = 12

b) (x+12)2 = 0,25

=> x + 12 = 0,5 hoặc x + 12= -0,5

=> x = -11,5 hoặc x = -12,5

c) (2x−3)3 = -8

=> 2x - 3 = -2

=> x = 0,5

d) (3x−2)5 = −243

=> 3x - 2 = -3

=> x = -1/3

e) (7x+2)-1 = 3-2

=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)

=> 7x + 2 = 9

=> x = 1

f) (x−1)3 = −125

=> (x−1) = −5

=> x = -4

g) (2x−1)4 = 81

=> 2x - 1 = 3

=> x = 2

h) (2x−1)6 = (2x−1)8

=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1

=> x = 1/2 hoặc x = 1 hoặc x = 0

17 tháng 7 2018

a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy ..

c/ \(\left(2x-3\right)^3=-8\)

\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-3=-2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

d/ \(\left(3x-2\right)^5=-243\)

\(\left(3x-2\right)^5=\left(-3\right)^5\)

\(\Leftrightarrow3x-2=-3\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy ...

e/ \(\left(x-1\right)^3=-125\)

\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)

\(\Leftrightarrow x-1=-5\)

\(\Leftrightarrow x=-4\)

Vậy..

f/ \(\left(2x-1\right)^4=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy...

g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)

\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy..

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

$\sin (x+30^0)=\frac{-1}{2}=\sin (-30^0)$

\(\Rightarrow \left[\begin{matrix} x+30^0=-30^0+360^0k\\ x+30^0=210^0+360^0k\end{matrix}\right.\) với $k$ nguyên 

\(\Leftrightarrow \left[\begin{matrix} x=-60^0+360^0k(1)\\ x=180^0+360^0k(2)\end{matrix}\right.\)

Với $(1): $0^0< -60^0+360^0k< 3600^0$

$\Leftrightarrow \frac{1}{6}< k< 10$

Mà $k$ nguyên nên $k=1;2;3;...;9$. Bạn thay các giá trị này vô $(1)$ để tìm $x$

Với $(2): $0^0< 180^0+360^0k< 3600^0$

$\Leftrightarrow \frac{-1}{2}< k< 9,5$. Mà $k$ nguyên nên $k=0,1,2,..,9$. Bạn thay các giá trị này vô $(2)$ để tìm $x$