K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Câu 31 thử ĐA

Câu 33: có công thức

Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d

\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D

15 tháng 3 2017

Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh

26 tháng 12 2022

loading...  

26 tháng 11 2021

Câu nào

26 tháng 11 2021

Lỗi rùi bn ak

20 tháng 3 2021

đề đâu e

 

6 tháng 9 2021

Đặt y = f(x) = - 2x2 có đồ thị (C)

và y = g(x) = - 2x2 - 6x + 3 có đồ thị (C')

Ta có :

g(x) = - 2x2 - 6x + 3 

= - 2\(\left(x^2+3x-\dfrac{3}{2}\right)\)

= - 2\(\left(x+\dfrac{3}{2}\right)^2\) + \(\dfrac{15}{2}\)

\(f\left(x+\dfrac{3}{2}\right)+\dfrac{15}{2}\)

Vậy tịnh tiến (C) sang trái \(\dfrac{3}{2}\) đơn vị rồi kéo (C) lên trên \(\dfrac{15}{4}\) đơn vị ta được (C')

 

5 tháng 2 2022

Đề bài đâu rồi em?

5 tháng 2 2022

\(b,\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{\sqrt{15}}=\dfrac{\sqrt{2}}{\sqrt{5}}\)

\(d,\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\left(\sqrt{ab}-\sqrt{bc}\right)}=\sqrt{ab}+\sqrt{bc}=\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)\)

\(e,\left(a\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\left(\sqrt{\dfrac{a}{b}+\dfrac{2b.\sqrt{ab}}{b}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\sqrt{a}\sqrt{a+2b\sqrt{ab}}+b\sqrt{a^2}\)

\(=a\sqrt{a^2+2ab\sqrt{ab}}+ab\)

\(=a\left(\sqrt{a^2+2ab\sqrt{ab}}+b\right)\)

\(f,\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}+1-\sqrt{a}\right)\)

\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)

\(=\left(a-1\right)^2=a^2-2a+1\)

18 tháng 9 2021

a)\(đkx\ge1,x\ne-1\)

\(\sqrt{\dfrac{x-1}{x+1}}=2\)

\(\Leftrightarrow\dfrac{x-1}{x+1}=4\)

\(\Leftrightarrow x-1=4x-4\)

\(\Leftrightarrow x=1\)(nhận)

Vậy S=\(\left\{1\right\}\)

c)đk\(25x^2-10x+1=\) \(\left(5x-1\right)^2\ge0\Leftrightarrow x\ge\dfrac{1}{5}\)

\(\sqrt{25x^2-10x+1}+2x=1\)

\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}+2x=1\)

\(\Leftrightarrow5x-1+2x=1\)

\(\Leftrightarrow x=\dfrac{2}{7}\)(nhận)

Vậy S=\(\left\{\dfrac{2}{7}\right\}\)

c: Ta có: \(\sqrt{25x^2-10x+1}+2x=1\)

\(\Leftrightarrow\left|5x-1\right|=1-2x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=1-2x\left(x\ge\dfrac{1}{5}\right)\\5x-1=2x-1\left(x< \dfrac{1}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{7}\left(nhận\right)\\x=0\left(nhận\right)\end{matrix}\right.\)