K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

= 3/4 . 8/9 . ....... . 9999/10000

=3/10000

26 tháng 3 2022

\(=\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\left(\dfrac{16}{16}-\dfrac{1}{16}\right)...\left(\dfrac{10000}{10000}-\dfrac{1}{10000}\right)\)

\(=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}....\cdot\dfrac{9999}{10000}\)

\(=\dfrac{3.8.15.....9999}{4.9.16.....10000}=\dfrac{\left(1.3\right)\left(2.4\right)\left(3.5\right)....\left(99.101\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right).....\left(100.100\right)}\)

\(=\dfrac{\left(1.2.3...99\right)\left(3.4.5....101\right)}{\left(2.3.4...100\right)\left(2.3.4...101\right)}=\dfrac{101.1}{100.2}=\dfrac{101}{200}\)

26 tháng 3 2022
Tham Khảo 

NV
20 tháng 1 2022

\(1-\dfrac{1}{n^2}=\dfrac{n^2-1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)

\(\Rightarrow\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)=\dfrac{1.3.2.4...\left(n-1\right)\left(n+1\right)}{2^2.3^2...n^2}\)

\(=\dfrac{1.2...\left(n-1\right)}{2.3...n}.\dfrac{3.4...\left(n+1\right)}{2.3...n}=\dfrac{1}{n}.\dfrac{n+1}{2}=\dfrac{n+1}{2n}\)

30 tháng 10 2023

\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)

\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)

18 tháng 3 2017

a)

\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(=\dfrac{1}{100}.\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

18 tháng 3 2017

ai bít câu b.c ko

31 tháng 12 2023

a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)

\(=-\dfrac{1}{10}\)

9<10

=>1/9>1/10

=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)

=>\(A>-\dfrac{1}{9}\)

b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)

\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)

20<21

=>\(\dfrac{11}{20}>\dfrac{11}{21}\)

=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)

=>\(B< -\dfrac{11}{21}\)

23 tháng 9 2021

\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)

23 tháng 9 2021

\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)

                      ( chỉ cần ghi đáp án thoi )câu 1 : \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{21}\right)\)câu 2 : \(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{100}\right)\)câu 3 : tìm a để \(\dfrac{a}{18}\), lớn hơn \(\dfrac{-5}{6}\)và nhỏ hơn \(\dfrac{-1}{2}\)câu 4...
Đọc tiếp

                      ( chỉ cần ghi đáp án thoi )

câu 1 : \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{21}\right)\)

câu 2 : \(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{100}\right)\)

câu 3 : tìm a để \(\dfrac{a}{18}\), lớn hơn \(\dfrac{-5}{6}\)và nhỏ hơn \(\dfrac{-1}{2}\)

câu 4 : \(D=\left(\dfrac{1}{7}\right)^0+\left(\dfrac{1}{7}\right)^1+\left(\dfrac{1}{7}\right)^2+....+\left(\dfrac{1}{7}\right)^{2017}\)

câu 5 : \(E=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+\dfrac{1}{3^4}-.....+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)

câu 6 : \(F=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)

câu 7 : rút gọn\(\dfrac{3}{5}+\dfrac{3}{5^4}+\dfrac{3}{5^7}+...+\dfrac{3}{5^{100}}=?\)

câu 8 : tính \(2^2+2^2+2^3+2^4+2^5+....+2^{49}+2^{50}\)

câu 9  : cho A = 1 + 3 +\(3^2+3^3+3^4+...+3^{100}\) khi đó stn 2.A+1=\(3^n\)

 

 

2
27 tháng 9 2021

\(1,A=\dfrac{1}{21}\\ 2,B=\dfrac{101}{200}\\ 3,a\in\left\{-14;-13;-12;-11;-10\right\}\\ 4,D=\dfrac{48}{7}\\ 5,E=-\dfrac{1}{3}\\ 6,F=2-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

Câu 8:

Ta có: \(A=2+2^2+2^3+2^4+...+2^{50}\)

\(\Leftrightarrow2\cdot A=2^2+2^3+...+2^{51}\)

\(\Leftrightarrow A=2^{51}-2\)