Cho đẳng thức 2x2 + 7y2 +4( xy - 2x + 3y ) +28 = 0
Khi đó (x;y) = { ...... ; .......}
mấy pạn giải giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có hai cách trình bày với bài này: một là bạn có thể liệt kê hết các phần tử ra hoặc bạn sắp xếp theo cùng thứ tự và tính như sau:
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
Mình tính thẳng ra nhé.
a) -A+B-C= -4x^2 + 2xy - 3y^2 + 3y + 7.
b) A+B-(-C)= -5y^2 = 2xy - 4x + 9y + 5.
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
Cho các số thực x,y ≥ 0 thoả mãn xy = 1 .Tìm GTNN của biểu thức P= √7x2+18xy+39y2 + √39x2+ 18xy +7y2
\(P=\sqrt{4x^2+36y^2+24xy+3x^2+3y^2-6xy}+\sqrt{36x^2+4y^2+24xy+3x^2+3y^2-6xy}\)
\(P=\sqrt{\left(2x+6y\right)^2+3\left(x-y\right)^2}+\sqrt{\left(6x+2y\right)^2+3\left(x-y\right)^2}\)
\(P\ge\sqrt{\left(2x+6y\right)^2}+\sqrt{\left(6x+2y\right)^2}=8\left(x+y\right)\ge16\sqrt{xy}=16\)
\(P_{min}=16\) khi \(x=y=1\)
\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)
\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)
\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)
\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)
\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)
.... mấy ý còn lại bn tự lm nhé, tương tự thhooi
1) \(-\left(y+6\right)^2=-y^2-12y-36\)
2) \(-\left(4-y\right)^2=-y^2+8y-16\)
3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)
4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)
5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)
6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)
7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)
8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)
X=0;Y=0