K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Ta có : \(4^x-12.2^x+32=0\)

\(\Leftrightarrow2^x.2^x-4.2^x-8.2^x+4.8=0\)

\(\Leftrightarrow2^x.\left(2^x-4\right)-8\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2^x-2^3=0\\2^x-2^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2^x=2^3\\2^x=2^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy x = 3 hoặc x = 2

14 tháng 3 2017

\(4^x-12.2^x+32=0\left(1\right)\) đăt \(t=2^x\Rightarrow t>0\)

(1) \(\Leftrightarrow\)\(\left(2^x\right)^2-12.2^x+32=0\)

\(\Leftrightarrow t^2-12t+32=0\)

\(\Leftrightarrow\) (t-8) (t-4) =0 \(\Rightarrow\left[{}\begin{matrix}t=4\\t=8\end{matrix}\right.\)

- t = 4 \(\Rightarrow2^x=2^2\Rightarrow x=2\)

- t = 8 \(\Rightarrow2^x=2^3\Rightarrow x=3\)

vậy pt có 2 nghiệm x =2 và x=3

\(\Rightarrow x=2\)

26 tháng 7 2017

ban coi ki laoi de coi chung de sai do cho 4x

30 tháng 7 2017

mình giải đc rồi cảm ơn bạn nha

30 tháng 1 2016

đặt 2xlà a thì ra rồi

30 tháng 1 2016

x=2 hoặcx= 3

29 tháng 12 2019

\(4^x-12.2^x+32=0\Leftrightarrow\left(2^x\right)^2-2.6.2^x+6^2-4=0\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)

\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\Leftrightarrow\orbr{\begin{cases}2^x-8=0\\2^x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2^x=8\\2^x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=2^3\\2^x=2^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)

Vậy \(S=\left\{2;3\right\}\)

3 tháng 1 2018

\(4^x-12.2^x+32=0\)

\(2^x.2^x-4.2^x-8.2^x+4.8=0\)

\(2^x\left(2^x-4\right)-8\left(2^x-4\right)=0\)

\(\left(2^x-4\right)\left(2^x-8\right)=0\)

\(\left[{}\begin{matrix}2^x-4=0\\2^x-8=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2^x=2^2\\2^x=2^3\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
4 tháng 2 2020

Ta có : \(4^x+12.2^x+32=0\)

<=> \(\left(2^x\right)^2+2.6.2^x+36-4=0\)

<=> \(\left(2^x+6\right)^2-4=0\)

<=> \(\left(2^x+6+2\right)\left(2^x+6-2\right)=0\)

<=> \(\left(2^x+8\right)\left(2^x+4\right)=0\)

<=> \(\left[{}\begin{matrix}2^x+8=0\\2^x+4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}2^x=-8\\2^x=-8\end{matrix}\right.\) ( Vô lý )

Vậy phương trình vô nghiệm .

=>(2^x)^2-12*2^x+32=0

=>(2^x-4)(2^x-8)=0

=>x=3 hoặc x=2