Tính tổng các số nguyên \(x\) biết :\(\left|-x\right|\le\left|-30\right|\) và \(x\ge1\)
Help me!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b chuyển thành 4 cases rồi biến đổi 3 bước, a sẽ làm bước 4 và bước 5, 6 :v
...
...
...
\(\left[{}\begin{matrix}x=-2016\\x\in\left\{-2017,-2016\right\}\\x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)
=> \(x\in\left\{-2017,-2016\right\}\)
=> Tổng các số nguyên x là: \(-2017+\left(-2016\right)=-4033\)
Lm câu b trước:
b) \(\left|x+2016\right|+\left|x+2017\right|=1\)
=> \(\left|x+2016\right|+\left|-x-2017\right|=1\)
Mặt khác: \(\left|x+2016\right|+\left|-x-2017\right|\)
\(\ge\)\(\left|x+2016-x-2017\right|\) = \(\left|-1\right|=1\)
=> Dấu = xảy ra <=> \(2016\le x\le2017\)
Mà x nguyên => x = 2016; 2017
=> Tổng các số nguyên x là 2016 + 2017 = 4033
a) \(x=\left(-2017\right)+\left(-2016\right)+....+0+1+....+2017+2018\)
\(\Rightarrow x=2018\)
b)\(a+3\le x\le a+2018\)
\(\Rightarrow a\le x\le2015\leftrightarrow\left(x\ge3\right)\)
tổng là vân vân và vân vân
chịu
\(f\left(-1\right)=\lim\limits_{x\rightarrow-1^-}f\left(x\right)=\lim\limits_{x\rightarrow-1^-}\left(2-ax\right)=2+a\)
\(\lim\limits_{x\rightarrow-1^+}f\left(x\right)=\lim\limits_{x\rightarrow-1^+}\left(x^2-bx+2\right)=3+b\)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(4x+a\right)=4+a\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(x^2-bx+2\right)=3-b\)
Hàm liên tục trên R khi và chỉ khi:
\(\left\{{}\begin{matrix}2+a=3+b\\4+a=3-b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)
a)√x−1=2(x≥1)
\(x-1=4
\)
x=5
b)
\(\sqrt{3-x}=4\) (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19
a: Ta có: \(\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Ta có: \(\sqrt{3-x}=4\)
\(\Leftrightarrow3-x=16\)
hay x=-13
c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)
\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)
\(\Leftrightarrow-2x=-\dfrac{47}{16}\)
hay \(x=\dfrac{47}{32}\)
d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1=\dfrac{49}{4}\)
hay \(x=\dfrac{53}{4}\)
e: Ta có: \(\sqrt{x-1}-3=1\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
hay x=17
f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)
\(\Leftrightarrow x+2=\dfrac{1}{64}\)
hay \(x=-\dfrac{127}{64}\)
Ta có :
\(\left|-x\right|\le\left|-30\right|\) và \(x\ge1\)
\(\Rightarrow\left|x\right|\le\left|30\right|\) và \(x\ge1\) ; \(x\in Z\)
\(\Rightarrow x\in\left\{1;2;3;..............;30\right\}\)
\(\Rightarrow\) Tổng các giá trị của \(x\) là :
\(1+2+3+..............+30=\dfrac{\left(1+30\right).30}{2}=465\)
Vậy tổng các số nguyên \(x\) là \(465\)
ít cái "..." thôi bạn ạ