chung minh rang: (a+b)2/(a-b)2 +(b+c)2/(b-c)2+(a+c)2/(c-a)2 >=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đổi 1 tí nhé
\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)
\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)
\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)
Cộng vế với vế của (1), (2), (3) suy ra
\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
\(\Leftrightarrow Dpcm\)
Cho a,b,c>0.Chung minh rang \(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\)
Ta có:
\(\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[\left(b+2c\right)+\left(c+2a\right)+\left(a+2b\right)\right]\)
\(\ge\left[\sqrt{\frac{a^2}{b+2c}.\left(b+2\right)}+\sqrt{\frac{b^2}{c+2a}.\left(c+2a\right)}+\sqrt{\frac{c^2}{a+2b}.\left(a+2b\right)}\right]^2\)
\(=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[3\left(a+b+c\right)\right]\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\left(đpcm\right)\)
Ta có VT
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)\(\left(\text{đ}pcm\right)\)