K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

a/ D đối xứng với H qua AB

⇒ AB là đường trung trực của DH ⇒ \(AD=AH\) (tính chất đường trung trực)

- E đối xứng với H qua AC

⇒ AC là đường trung trực của DE ⇒ \(AH=AE\) (tính chất đường trung trực)

Vậy: \(AD=AE\) hay A là trung điểm của DE (đpcm)

==========

b/ - AB là trung trực của DH (cmt) ⇒ \(DB=HB\) (tính chất đường trung trực)

- AC là đường trung trực của DE (cmt) ⇒ \(HC=HE\) (tính chất đường trung trực)

Xét △ADB và △ADH có:

 - \(AH=AD\left(cmt\right)\)

 - \(AB\text{ }chung\)

 - \(DB=HB\left(cmt\right)\)

⇒ △ADB=△AHB (c.c.c) ⇒ \(\hat{ADB}=\hat{AHB}=90\text{°}\left(1\right)\)

- Tương tự ta cũng có: △AHC=△AEC (c.c.c) ⇒ \(\hat{AHC}=\hat{AEC}=90\text{°}\left(2\right)\)

\(DE\perp DB;DE\perp CE\Rightarrow DB\text{//}CE\)

⇒ ABEC là hình thang

Từ (1) và (2): Vậy: ABEC là hình thang vuông (đpcm)

==========

c/ Xét △AHB và △ABC có:

\(\hat{AHB}=\hat{BAC}=90\text{°}\)

\(\hat{ABH}\text{ }chung\)

⇒ △HBA ∼ △ABC (g.g) 

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{AB}\Rightarrow AB=\sqrt{\left(2+8\right).2}=\sqrt{20}\left(cm\right)\)

Xét △AHB vuông tại H:

\(AB^2=AH^2+HB^2\left(Pytago\right)\)

\(\Rightarrow AH=\sqrt{\left(\sqrt{20}\right)^2-2^2}=4\left(cm\right)\)

- Mặt khác: \(AH=AD=AE=4\left(cm\right)\)

\(HB=DB=2\left(cm\right)\)

\(HC=CE=8\left(cm\right)\)

\(\Rightarrow P_{BDEC}=\left(4+4\right)+2+\left(2+8\right)+8=28\left(cm\right)\)

Vậy: \(AH=4cm\)

        \(P_{BDEC}=28cm\)

15 tháng 8 2021

câu c) chứng minh hai tam giác đó bằng nhau hơi sai

8 tháng 8 2018

Hình bạn tự vẽ nhé

a, Ta có: D đối xứng với H qua AB \(\Rightarrow\)AB là đường trung trực mà A \(\in\)AB \(\Rightarrow AD=AH\)(1)

Tương tự ta có: \(AH=AE\)(2)

Từ (1), (2) \(\Rightarrow AD=AE\)

\(\Delta ADH\)có: \(AD=AH\left(cmt\right)\Rightarrow\Delta ADH\)cân tại A có AB là đường trung trực \(\Rightarrow\)AB là phân giác của \(\widehat{DAH}\)\(\Rightarrow\widehat{DAB}=\widehat{BAH}\)

Chứng minh tương tự với \(\Delta AHE\)\(\Rightarrow\)AC là phân giác của \(\widehat{HAE}\)\(\Rightarrow\widehat{HAC}=\widehat{CAE}\)

\(\Delta ABC\)có: \(\widehat{BAH}+\widehat{HAC}=90^o\)

Ta có: \(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=\widehat{DAE}\)

hay \(2\widehat{BAH}+2\widehat{HAC}=\widehat{DAE}\)

       \(2\left(\widehat{BAH}+\widehat{HAC}\right)=\widehat{DAE}\)

       \(2.90^o=\widehat{DAE}=180^o\)

\(\Rightarrow\)D, A, E thẳng hàng

mà \(AD=AE\left(cmt\right)\)

\(\Rightarrow\)A là trung điểm của DE

b, Ta có: AB là đường trung trực mà B \(\in\)AB \(\Rightarrow BD=BH\)

Tương tự ta có: \(CH=CE\)

Xét \(\Delta ADB\)và \(\Delta AHB\)có: 

AB chung

\(AD=AH\left(cmt\right)\)

\(DB=BH\left(cmt\right)\)

\(\Rightarrow\Delta ADB=\Delta AHB\left(c-c-c\right)\)\(\Rightarrow\widehat{AHB}=\widehat{ADB}=90^o\Rightarrow BD\perp DE\)

Chứng minh tương tự ta có: \(\Delta AHC=\Delta AEC\left(c-c-c\right)\)\(\Rightarrow\widehat{AHC}=\widehat{AEC}=90^o\Rightarrow EC\perp DE\)

Ta có: \(BD\perp DE\left(cmt\right)\)

          \(EC\perp DE\left(cmt\right)\)

\(\Rightarrow BD//EC\)

Tứ giác BDEC có: \(BD//EC\left(cmt\right)\)\(\Rightarrow\)BDEC là hình thang có \(\widehat{BDE}=\widehat{DEC}=90^o\Rightarrow\)BDEC là hình thang vuông

7 tháng 12 2021

giúp

 

a: Ta có: H và E đối xứng nhau qua AB

nên AH=AE và AB là tia phân giác của góc HAE(1)

Ta có: H và D đối xứng nhau qua AC

nên AH=AD và AC là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra D và E đối xứng nhau qua A

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của HM

Suy ra: AB\(\perp\)HM và E là trung điểm của HM

Ta có: H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

Suy ra: AC\(\perp\)HN tại F và F là trung điểm của NH

Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật