Bài 1: Cho \(\Delta ABC\) vuông tại A, đường cao AH. Gọi D và E lần lượt là điểm đối xứng của điểm H, qua AB và AC. Chứng minh rằng:
a) A là trung điểm của đoạn DE.
b) Tứ giác BDEC là hình thang vuông.
c) Cho BH=2cm, CH=8cm. Tính AH và chu vi hình thang BDEC.
a/ D đối xứng với H qua AB
⇒ AB là đường trung trực của DH ⇒ \(AD=AH\) (tính chất đường trung trực)
- E đối xứng với H qua AC
⇒ AC là đường trung trực của DE ⇒ \(AH=AE\) (tính chất đường trung trực)
Vậy: \(AD=AE\) hay A là trung điểm của DE (đpcm)
==========
b/ - AB là trung trực của DH (cmt) ⇒ \(DB=HB\) (tính chất đường trung trực)
- AC là đường trung trực của DE (cmt) ⇒ \(HC=HE\) (tính chất đường trung trực)
Xét △ADB và △ADH có:
- \(AH=AD\left(cmt\right)\)
- \(AB\text{ }chung\)
- \(DB=HB\left(cmt\right)\)
⇒ △ADB=△AHB (c.c.c) ⇒ \(\hat{ADB}=\hat{AHB}=90\text{°}\left(1\right)\)
- Tương tự ta cũng có: △AHC=△AEC (c.c.c) ⇒ \(\hat{AHC}=\hat{AEC}=90\text{°}\left(2\right)\)
\(DE\perp DB;DE\perp CE\Rightarrow DB\text{//}CE\)
⇒ ABEC là hình thang
Từ (1) và (2): Vậy: ABEC là hình thang vuông (đpcm)
==========
c/ Xét △AHB và △ABC có:
- \(\hat{AHB}=\hat{BAC}=90\text{°}\)
- \(\hat{ABH}\text{ }chung\)
⇒ △HBA ∼ △ABC (g.g)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{AB}\Rightarrow AB=\sqrt{\left(2+8\right).2}=\sqrt{20}\left(cm\right)\)
Xét △AHB vuông tại H:
\(AB^2=AH^2+HB^2\left(Pytago\right)\)
\(\Rightarrow AH=\sqrt{\left(\sqrt{20}\right)^2-2^2}=4\left(cm\right)\)
- Mặt khác: \(AH=AD=AE=4\left(cm\right)\)
\(HB=DB=2\left(cm\right)\)
\(HC=CE=8\left(cm\right)\)
\(\Rightarrow P_{BDEC}=\left(4+4\right)+2+\left(2+8\right)+8=28\left(cm\right)\)
Vậy: \(AH=4cm\)
\(P_{BDEC}=28cm\)
câu c) chứng minh hai tam giác đó bằng nhau hơi sai