K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

Sao ông ko trả lời hả ?

23 tháng 9 2015

Từ giờ mình không giải toán nữa , lên OLM cho vui thôi          

12.12 =

9
12 tháng 7 2016

12x12=144

12 tháng 7 2016

12.12

= 12 = 144

Đáp số: 144

13 tháng 12 2017

12.12+12.88 = 25 nha

13 tháng 12 2017

12.12+12.88

=12.(12+88)

=12.100=1200

30 tháng 7 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

7 tháng 1 2022

Có số số hạng là: (99,99-11,11):1,01+1=89

Tổng của dãy số là: (99,99 + 11,11) x 89 : 2 = 4943,95

Đ/S: 4943,95

28 tháng 5 2016
  • HỌC TOÁN
  • KIỂM TRA
  • BÁO CÁO
  • THÔNG TIN

Bài toán 104

Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.

Ta có:

  - Số \(14\) không phải là số chính phương

  - Số \(144\) là số chính phương vì \(144=12\times12=12^2\)

  - Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .

Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?

----------------------

Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.

 

Xem thêm:

  • Bài toán 103
  • Bài toán 102
  • Bài toán 101
  • Bài toán 100
  • Bài toán 99

 

Hoàng Thị Thu Huyền DMCA.com Protection Status                  Gửi ý kiến 23 bình luận
  King Math09:38:50 ngày 28/05/2016 Trả lời

Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:

a, $n<4$n<4 

Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.

b, $n\ge4$n4 

Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(bZ) 

Vì $10000\vdots16$1000016 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12

Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an4 nhưng không chia hết cho 16 nên:

$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$ $a_n$an chia 16 dư 4. Vô lý.

Vậy $a_n$an không phải là số chính phương.

Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

a: Đặt M=0

=>2x-12=0

hay x=12

b: Đặt N=0

=>x+5-4x-1=0

=>-3x+4=0

hay x=4/3

15 tháng 9 2016

12 + 12 + 12 +12 x 12

12 + 12 + 12 + 144 = 188

15 tháng 9 2016

\(576\)

Ai k tui tui k lại

~~~~

ủng hộ vs

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) 7.7.7.7.7 = 75

b) 12.12….12 = 12n ( n thừa số 12)