Tìm số nguyên x > 0 thỏa mãn \(3.3^2.3^3.3^4....3^x=3^{190}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.32.33.34......3x=3190
=>3(1+2+3+...........+x)=3190
=>1+2+3+.........+x=190
=>\(\frac{x.\left(x+1\right)}{2}\)=180
=>x.(x+1)=190.2
=>x.(x+1)=380
=>x=19
3.3^2.3^3.............3^x=3^190
3^1+2+3+4+....+x=3^190
nên 1+2+3+.........+x=190
hay (x+1).x :2 =190 nen 190.2= (x+1) . x hay 380 =19.20
vay x=19
=> 1+2+3+4+5+....+x = 190
x(x+1) = 190.2 = 380
x(x+1) = 19.(19 + 1)
VẬy x = 19
=>31+2+3+4+...+x=3190
=>1+2+3+4+...+x=190
=>(x+1).x:2=190
=>(x+1).x=380
mà 380 chỉ có thể ptích thành: 380=20.19
=>x+1=20 và x=19
vậy x=19
Ta có : 3.32.33......3x = 31+2+3+...+x
Mà 3.32.33......3x = 3190
=> 31+2+3+...+x = 3190
<=> \(3^{\frac{x\left(x+1\right)}{2}}=3^{190}\)
<=> x(x + 1)/2 = 190
<=> x(x + 1) = 380 = 19.20
<=>x(x + 1) = 19.(19 + 1)
=> x = 19
Vậy x = 19
ta có
\(3^{1+2+3+..+x}=3^{3.12}\Leftrightarrow\frac{x\left(x+1\right)}{2}=36\)
\(\Leftrightarrow x.\left(x+1\right)=72=8.9\Leftrightarrow x=8\)
b. ta có
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}=\left(\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\right)+1-\frac{1}{5^{2017}}\)
\(=A+1-\frac{1}{5^{2017}}\Rightarrow4A=1-\frac{1}{5^{2017}}< 1\Rightarrow A< \frac{1}{4}\)
\(3.3^{n-1}.\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)
\(\Rightarrow3.3^{n-1}.6.3^{n+2}+3.3.3^{n-1}-2.3^n.3^{n+3}+1.2.3^n=405\)
\(\Rightarrow3^{1+n-1}.6.3^n.3^2+3^{1+1+n-1}-2.3^n.3^n.3^3+3^n.2=405\)
\(\Rightarrow3^n.\left(6.3^2\right).3^n+3^{n+1}-\left(2.3^3\right).3^{n+n}+3^n.2=405\)
\(\Rightarrow\left(3^n.3^n\right).54+3^{n+1}-54.3^{2n}+3^n.2=405\)
\(\Rightarrow3^{2n}.54+3^{n+1}-3^{2n}.54+3^n.2=405\Rightarrow3^{n+1}+3^n.2=405\)
\(\Rightarrow3^n.3+3^n.2=405\Rightarrow3^n.5=405\Rightarrow3^n=81=3^4\Rightarrow n=4\)
\(3\cdot3^2\cdot3^3\cdot3^4\cdot....\cdot3^x=3^{190}\)
\(\Leftrightarrow3^{1+2+3+...+x}=3^{190}\)
\(\Leftrightarrow1+2+3+...+x=190\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2}=190\Leftrightarrow x\left(x+1\right)=380\)
\(\Leftrightarrow x^2+x-380=0\)
\(\Leftrightarrow x^2-19x+20x-380=0\)
\(\Leftrightarrow x\left(x-19\right)+20\left(x-19\right)=0\)
\(\Leftrightarrow\left(x-19\right)\left(x+20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-19=0\\x+20=0\end{matrix}\right.\)\(\Leftrightarrow x=19\left(x>0\right)\)
dễ thì làm đi =="