Cho tam giác ABC cân tại A ( góc A > 900). Lấy điểm M nằm giữa B và C. Trên nửa mặt phẩng bờ AB chứa C vẽ tia Bx sao cho góc ABx= góc AMB. Tia Bx cắt tia AM ở D.
a) cm: tam giác AMB\(\approx\) tam giác ABD
b) cm: MB.MC=MA.MD
c) cm: tam giác MBA \(\approx\) tam giác MDC
a: Xét ΔAMB và ΔABD có
\(\widehat{AMB}=\widehat{ABD}\)
góc BAD chung
Do đó: ΔAMB\(\sim\)ΔABD
b: Xét ΔCMA và ΔDMB có
\(\widehat{MAC}=\widehat{MBD}\)
\(\widehat{AMC}=\widehat{BMD}\)
Do đó: ΔCMA\(\sim\)ΔDMB
Suy ra: MC/MD=MA/MB
hay \(MB\cdot MC=MA\cdot MD\)