A = sin(5pi/2 - anfa) - cos(13pi/2 - anfa) - 3sin( anfa - 5pi) - 2sin - cos anfa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác vuông có góc \(\alpha=30\Rightarrow\)góc nhọn còn lại bằng 60\(=2\alpha\)
Vậy \(sin\alpha=cos2\alpha\Leftrightarrow sin^2\alpha=cos^22\alpha=x\)
\(tan2\alpha=cot\alpha=y\) thay vào P, ta được
\(P=\dfrac{x-y}{x+y}=1-\dfrac{2y}{x+y}=1-\dfrac{2.\sqrt{3}}{\dfrac{3}{4}+\sqrt{3}}=\dfrac{8\sqrt{3}-19}{13}\)
áp dụng công thức sin2a+cos2a=1
A= sin2a +cos2a-2sina.cosa-sin2a-cos2a+2sina.cosa = 0
B=(sỉn2a+cos2a)2 =12 =1
C= cos2a(cos2a+sin2a)+ sin2a=cos2a+sin2a=1
D=sin2a(sin2p+cos2p)+cos2a=sin2a+cos2a=1
E= (sin2a+cos2a)(sin4a-sin2a.cos2a+cos4a)+3sin2a.cos2a
=sin4a+2sin2a.cos2a+ cos4a=(sin2a+cos2a)2=1
Bài 1: ( Tự vẽ hình )
Áp dụng tỉ số lượng giác trong tam giác vuông DEF
\(TanF=\frac{DE}{DF}=\frac{3}{5}\)
\(TanF=31\)
Bài 2: ( Tự vẽ hình, gợi ý: Vẽ tam giác vuông ABC chọn góc \(\widehat{B}\)là góc \(\alpha\))
Áp dụng định lý Pytago vào tam giác vuông ABC:
\(BC^2=AC^2+AB^2\)
\(1+cot^2\alpha=1+\frac{AB^2}{AC^2}=\frac{AC^2+AB^2}{AC^2}\)
\(1+cot^2\alpha=\frac{BC^2}{AC^2}=1:\frac{AC^2}{BC^2}\)
\(1+cot^2\alpha=1:sin^2\alpha\)
\(1+cot^2\alpha=\frac{1}{sin^2\alpha}\)