Tìm x, biết:
\(\frac{3}{2x+1}\)+ \(\frac{10}{4x+2}\) - \(\frac{6}{6x+3}\) = \(\frac{12}{26}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\Rightarrow\frac{3}{2x+1}+\frac{5.2}{2\left(2x+1\right)}-\frac{3.2}{3\left(2x+1\right)}=\frac{6}{13}\)
=> \(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
=> \(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
=> \(\frac{6}{2x+1}=\frac{6}{13}\)
=> 2x + 1 = 13
=> 2x = 12
=> x = 6
Vậy x = 6
\(\frac{3}{2x+1}+\frac{10}{2\left(2x+1\right)}-\frac{6}{3\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
\(\Rightarrow2x+1=13\left(6=6\right)\)
\(2x=12\)
\(x=6\)
\(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2\left(2x+1\right)}-\frac{2.3}{3\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
\(2x+1=13\)
\(\Rightarrow x=6\)
\(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2\left(2x+1\right)}-\frac{3.2}{3\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
1) Ta có: \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\cdot\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)
\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{25}{4}\cdot2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{50}{4}}+12\right)\)
\(=-12\sqrt{2}+12-\frac{5\sqrt{2}}{2}-12\)
\(=\frac{-24\sqrt{2}-5\sqrt{2}}{2}\)
\(=\frac{-29\sqrt{2}}{2}\)
2) Ta có: \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)
\(=\frac{26\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}+\frac{4}{2-\sqrt{3}}\)
\(=\frac{26\left(5-2\sqrt{3}\right)}{25-12}+\frac{4\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=2\left(5-2\sqrt{3}\right)+4\left(2+\sqrt{3}\right)\)
\(=10-4\sqrt{3}+8+4\sqrt{3}\)
\(=18\)
3) ĐK để phương trình có nghiệm là: x≥0
Ta có: \(\sqrt{x^2-6x+9}=2x\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x\)
\(\Leftrightarrow\left|x-3\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x\\x-3=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3-2x=0\\x-3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=3\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1}
4) ĐK để phương trình có nghiệm là: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{4x^2+1}=2x-1\)
\(\Leftrightarrow\left(\sqrt{4x^2+1}\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow4x^2+1=4x^2-4x+1\)
\(\Leftrightarrow4x^2+1-4x^2+4x-1=0\)
\(\Leftrightarrow4x=0\)
hay x=0(loại)
Vậy: S=∅
a) Ta có: \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\)
\(=\frac{x\left(x+1\right)}{2x\left(x+3\right)}+\frac{2\cdot\left(2x+3\right)}{2x\left(x+3\right)}\)
\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+5x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}\)
\(=\frac{x\left(x+2\right)+3\left(x+2\right)}{2x\left(x+3\right)}\)
\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) Ta có: \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(=\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x}{x\left(2x+6\right)}-\frac{x-6}{x\left(2x+6\right)}\)
\(=\frac{3x-x+6}{x\left(2x+6\right)}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)
c) Ta có: \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)
\(=\frac{5\left(x+2\right)\cdot2\cdot\left(2-x\right)}{4\cdot\left(x-2\right)\cdot\left(x+2\right)}\)
\(=\frac{5\cdot2\cdot\left(2-x\right)}{-4\left(2-x\right)}=\frac{5\cdot2}{-4}=\frac{-5}{2}\)
d) Ta có: \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3x}{x\left(x+4\right)\cdot2\left(2-x\right)}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3}{2\left(x+4\right)\cdot\left(2-x\right)}=\frac{3\left(1-4x^2\right)}{2\left(-x^2-2x+8\right)}\)
\(=\frac{3-12x^2}{-2x^2-4x+16}\)
a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)
\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne-3;x\ne0\right)\)
\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{4x+6}{2x\left(x+3\right)}\)
\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)
b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\) \(\left(ĐKXĐ:x\ne\pm2\right)\)
\(=\frac{-5\left(x-2\right)}{2\left(x-2\right)}=\frac{-5}{2}\)
\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)
\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)
\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)
\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)
\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)
\(\frac{3}{2x+1}\)+ \(\frac{10}{4x+2}\) - \(\frac{6}{6x+3}\) = \(\frac{12}{26}\)
\(\dfrac{3}{2x+1}\) + \(\dfrac{2.5}{2\left(2x+1\right)}\) - \(\dfrac{2.3}{3\left(2x+1\right)}\) = \(\dfrac{6}{13}\)
\(\dfrac{3}{2x+1}\) + \(\dfrac{5}{2x+1}\) - \(\dfrac{2}{2x+1}\) = \(\dfrac{6}{13}\)
\(\dfrac{3}{2x+1}\) + \(\dfrac{5}{2x+1}\) + \(\dfrac{-2}{2x+1}\) = \(\dfrac{6}{13}\)
\(\dfrac{6}{2x+1}\) = \(\dfrac{6}{13}\)
Ta có: \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}\)= \(\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}\)
= \(\dfrac{3+5-2}{2x+1}=\dfrac{6}{2x+1}=\dfrac{12}{26}\) \(\Rightarrow156=24x+12\Rightarrow24x=144\Rightarrow x=6\)
Vậy x=6.
Học tốt nha