Tìm số tự nhiên n sao cho n^3 = 1111........1111
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) số nhỏ nhất có tám chữ số khác nhau 12345678 chia cho 1111 được thưong nguyên là 11112.
Quy trình: X=X+1:1111X, CALC X? 11112, ==... Đến khi X=X+1=11115 ta được kết quả so nhỏ nhất cần tìm là 12348765.
b) số lon nhất có tám chữ số khác nhau 87654321 chia cho 1111 được thưong nguyên là 78896.
Quy trình: X=X-1:1111X, CALC X? 78897, ==... Đến khi X=X+1=78894 ta được kết quả so lon nhất cần tìm là 12348765.
Bạn vào xem ở đây nè :http://diendan.hocmai.vn/showthread.php?t=344046
Nghĩ cái này nó cũng tựa tựa như vậy,ko biết có dùng được không:V
\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)
\(\dfrac{P}{3^{1111}}=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{3^{1111}\left(-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}\right)}\)
\(\dfrac{-P}{3^{1111}}=\dfrac{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}=1\)
\(-P=1.3^{1111}=3^{1111}\Leftrightarrow P=-3^{1111}\)
\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)
\(P=\dfrac{3^{1111}\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}{-1\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}\)
\(P=\dfrac{3^{1111}}{-1}=-3^{1111}\)
biết 1 cách :V thánh nào làm nốt cách kia đi ạ :V