K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

Ta có:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)

*Nếu a+b+c=0

=> a=-(b+c)

     b=-(a+c)

     c=-(a+b)

Thay 3 ý trên vào P, ta có:

\(P=\frac{b+c}{-\left(b+c\right)}+\frac{a+c}{-\left(a+c\right)}+\frac{a+b}{-\left(a+b\right)}\)

P=-1+(-1)+(-1)

P=-3

Nếu a+b+c khác 0

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)

\(\frac{a}{b+c}=\frac{1}{2}\) => 2a=b+c (1)

\(\frac{b}{a+c}=\frac{1}{2}\) => 2b=a+c (2)

\(\frac{c}{a+b}=\frac{1}{2}\) => 2c=a+b (3)

(1)-(2)

2a-2b=b-a

3a=3b

=>a=b (4)

(2)-(3)

2b-2c=c-b

3b=3c

=>b=c (5)

Từ (4) và (5)=> a=b=c (mâu thuẫn với đề bài)

Vậy M=-3

19 tháng 10 2016

Ta có: 

a/b+c =b/a+c =c/a+b hay b+c/a =a+c/b =a+b/c =(b+c)+(a+c)+(a+b)a+b+c =2a+2b+2c/a+b+c =2(a+b+c)/a+b+c =2

=>b+c/a =2;a+c/b =2;a+b/c =2

=>P=b+c/a +a+c/b +a+b/c =2+2+2=6

Vậy P=6 

13 tháng 6 2016

Đặt \(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\) ; \(Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)

Ta có : \(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)}{abc}\)

Xét tử số của P  :  \(ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)=ab\left[-\left(b-c\right)-\left(c-a\right)\right]+bc\left(b-c\right)+ac\left(c-a\right)\)

\(=-ab\left(b-c\right)-ab\left(c-a\right)+bc\left(b-c\right)+ac\left(c-a\right)\)

\(=b\left(b-c\right)\left(c-a\right)+a\left(c-a\right)\left(c-b\right)=\left(b-c\right)\left(c-a\right)\left(b-a\right)\)

\(\Rightarrow P=\frac{\left(b-c\right)\left(c-a\right)\left(b-a\right)}{abc}\)

Lại có : \(Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\). Đặt \(a-b=x\)\(b-c=y\)\(c-a=z\)

Suy ra được : \(\hept{\begin{cases}x-y=a-b-b+c=a+c-2b=-3b\\y-z=b-c-c+a=a+b-2c=-3c\\z-x=c-a+b-a=b+c-2a=-3a\end{cases}\Rightarrow\hept{\begin{cases}b=-\frac{\left(x-y\right)}{3}\\c=-\frac{\left(y-z\right)}{3}\\a=-\frac{\left(z-x\right)}{3}\end{cases}}}\)

Ta có : \(Q=\frac{-\left(\frac{y-z}{3}\right)}{x}+\frac{-\left(\frac{z-x}{3}\right)}{y}+\frac{-\left(\frac{x-y}{3}\right)}{z}=-\frac{1}{3}.\left(\frac{y-z}{x}+\frac{z-x}{y}+\frac{x-y}{z}\right)\)

\(=-\frac{1}{3}\left(\frac{yz\left(y-z\right)+xz\left(z-x\right)+yx\left(x-y\right)}{xyz}\right)\)

Đến đây rút gọn tương tự với P được: \(Q=\frac{\left(x-z\right)\left(x-y\right)\left(z-y\right)}{3xyz}=\frac{\left(3a\right).\left(-3b\right).\left(3c\right)}{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}\Rightarrow Q=\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Vậy : \(PQ=\frac{\left(b-c\right)\left(c-a\right)\left(b-a\right)}{abc}.\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=9\)

Vậy ta có điều phải chứng minh.

\(\)

4 tháng 9 2017

cac ban oi ket ban voi tui di

4 tháng 9 2017

học tính chất của dãy tỉ số bằng nhau chưa?

1 tháng 8 2020

Vì \(a,b,c\ne0\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

1 tháng 8 2020

Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

=> \(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

Nếu a + b + c = 0

=> a + b = - c

=> b + c = - a

=> a + c = - b

Khi đó P = \(\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne0\)

=> \(\frac{1}{b+c}=\frac{1}{a+c}=\frac{1}{a+b}\)

=> b + c = a + c = a + b

=> \(\hept{\begin{cases}b+c=a+c\\b+c=a+b\end{cases}\Rightarrow\hept{\begin{cases}a=b\\a=c\end{cases}}\Rightarrow a=b=c}\)

Khi đó P = \(\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

=> P = 6

Vậy khi a + b + c = 0 => P = -3

khi a + b + c  \(\ne0\) => P = 6

23 tháng 4 2019

xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b

Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )

Vậy A = -1

10 tháng 7 2015

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow P=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

vậy \(P=\frac{3}{2}\)

13 tháng 12 2019

Yêu cầu đề bài là gì?

1 tháng 1 2020

thiếu đề à ?cho thế là xong à?