Một vận chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
hay \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{4}}=\dfrac{z}{\dfrac{1}{3}}=\dfrac{x+y+z}{\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{3}}=\dfrac{59}{\dfrac{59}{60}}=60\)
do đó \(x=60.\dfrac{1}{5}=12\\ y=60.\dfrac{1}{4}=15\\ z=60.\dfrac{1}{3}=20\)
Vậy cạnh hình vuông là 5.12 = 60m
Tham Khảo:
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
Hay
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là 5.12 = 60m
Gọi thời gian vật chuyển động trên cạnh thứ nhất; thứ hai ; thứ ba; thứ tư lần lượt là: a; b; c; d
Theo đề, ta có: a+b+c+d=59 và 5a=5b=4c=3d
=>a/12=b/12=c/15=d/20 và a+b+c+d=59
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{12}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{d}{20}=\dfrac{a+b+c+d}{12+12+15+20}=\dfrac{59}{59}=1\)
=>a=12; b=12; c=15; d=20
Độ dài cạnh là 12*5=60m
Cùng một đoạn đường, vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s; 4m/s; 3m/s.
Ta có: 5x = 4y = 3z và x + y + z = 59
=>
Do đó: x = 60. = 12
y = 60. = 15
z = 60. = 20
Vậy cạnh hình vuông là
5.12 = 60m
theo bài toán ta có:
5*t1=5*t2=4*t3=3*t4(1) và t1+t2+t3+t4=59(2)
(1)=>t1=t2=(4*t3)/5=(3*t4)/5(3)
Từ (2) và (3) => t1+t1+(5*t1)/4+(5*t1)/3=59
=> t1=12(s)
=> cạnh hình vuông: 5*12=60(m)
- Gọi a,b,c,d lần lượt là thời gian ( tính bằng giây) của vật chuyển động trên các cạnh hình vuông
- Theo đề bài, ta có: 5a=5b=4c=3d (= độ dài hình vuông) và a+b+c+d =59
5a =5b = 4c = 3d = > a/1/5 = b/1/5 = c/1/4 = d/1/3
Áp dụng tính chất dãy tỉ số bằng nhau
a/1/5 = b/1/5 = c/1/4 = d/1/3 = a+b+c+d/ 1/5 +1/5 + 1/4 +1/3 = 59/ 59/60 = 60
k nha!
Gọi a,b,c,d (giây) lần lượt là thời gian vật đó chuyển động trên 4 cạnh hình vuông
Theo giả thiết, ta có: a+b+c+d=59 (giây)
Quãng đường vật đi được là:5a=5b=4c=3d (đều bằng cạnh hình vuông)
\(\Rightarrow\dfrac{5a}{60}=\dfrac{5b}{60}=\dfrac{4c}{60}=\dfrac{3d}{60}\)
\(\Rightarrow\dfrac{a}{12}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{d}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{12}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{d}{20}=\dfrac{a+b+c+d}{12+12+15+20}=\dfrac{59}{59}=1\)
\(\Rightarrow a=12\cdot1=12\)
Cạnh hình vuông là: 12.5=60m
Đáp số: 60 m